Solveeit Logo

Question

Mathematics Question on Matrices

Find the inverse of each of the matrices, if it exists. [13 27]\begin{bmatrix} 1 & 3\\\ 2 & 7\end{bmatrix}

Answer

Let A=$$\begin{bmatrix} 1 & 3\\\ 2 & 7\end{bmatrix}

We know that A=IAA = IA

so[13 27]\begin{bmatrix} 1 & 3\\\ 2 & 7\end{bmatrix}= [10 01]A\begin{bmatrix} 1 & 0\\\ 0 & 1 \end{bmatrix}A

[13 01]\begin{bmatrix} 1 & 3\\\ 0 & 1\end{bmatrix}= [10 21]A\begin{bmatrix} 1 & 0\\\ -2 & 1\end{bmatrix}A (R2R22R1)(R_2\rightarrow R_2-2R_1)

[10 01]=[73 21]A\begin{bmatrix} 1 & 0\\\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 7 & -3\\\ -2 & 1 \end{bmatrix}A (R1R13R2)(R_1\rightarrow R_1-3R_2)

A1\therefore A^{-1} =[73 21]\begin{bmatrix} 7 & -3\\\ -2 & 1 \end{bmatrix}