Solveeit Logo

Question

Mathematics Question on Matrices

Find the inverse of each of the matrices, if it exists. [11\23]\begin{bmatrix}1&-1\\\2&3\end{bmatrix}

Answer

Let A= [11\23]\begin{bmatrix}1&-1\\\2&3\end{bmatrix} We know that A = IA
[11\23]=[10\01]A\therefore \begin{bmatrix}1&-1\\\2&3\end{bmatrix}=\begin{bmatrix}1&0\\\0&1\end{bmatrix}A
[11\05]=[1021]A\Rightarrow\begin{bmatrix}1&-1\\\0&5\end{bmatrix}=\begin{bmatrix}1&0\\\\-2&1\end{bmatrix}A (R2 \to R2-2R1)
[11\05]=[102515]A\Rightarrow\begin{bmatrix}1&-1\\\0&5\end{bmatrix}=\begin{bmatrix}1&0\\\\-\frac{2}{5}&\frac{1}{5}\end{bmatrix}A (R2 15R2\to \frac{1}{5R_2})
[11\05]=[35152515]A\Rightarrow\begin{bmatrix}1&-1\\\0&5\end{bmatrix}=\begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\\\-\frac{2}{5}&\frac{1}{5}\end{bmatrix}A (R1 \to R1+R2)

so A-1= [35152515]\begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\\\-\frac{2}{5}&\frac{1}{5}\end{bmatrix}