Solveeit Logo

Question

Question: Find the inverse of \(A=\left[ \begin{aligned} & 1\text{ 0 1} \\\ & \text{0 2 3} \\\ & \...

Find the inverse of A=[1 0 1 0 2 3 1 2 1 ]A=\left[ \begin{aligned} & 1\text{ 0 1} \\\ & \text{0 2 3} \\\ & \text{1 2 1} \\\ \end{aligned} \right] by elementary column transformations.

Explanation

Solution

Hint : The inverse of the square matrix exists, where the determinant of the matrix does not equal to zero i.e. the non-singular. It follows the property - A1A=A1A=I{{A}^{-1}}A={{A}^{-1}}A=I where I is the identity matrix. By using elementary column transformation, you swap (interchanged) the columns and multiply the column with non-zero constant and add a multiple of one column to another column.

Complete step-by-step answer :
To find the inverse, first find the determinant of A
Determinant is an element that determines or identifies the nature or conditions of an outcome. It is denoted by det(A), det A or A\left| A \right|
A=103 023 121 \Rightarrow \left| A \right|=\left| \begin{matrix} 1 & 0 & 3 \\\ 0 & 2 & 3 \\\ 1 & 2 & 1 \\\ \end{matrix} \right|
The determinant of A is the product of the diagonal entries of the row echelon and the times of a factor ±1\pm 1.
Now,
A=1[(2)(1)(2)(3)]0[(0)(1)(1)(3)]+1[(0)(2)(2)(1)]\Rightarrow \left| A \right|=1[(2)(1)-(2)(3)]-0[(0)(1)-(1)(3)]+1[(0)(2)-(2)(1)]
Simplify the left hand side of the equation –
Here, the middle term is equal to zero, as zero multiplied with anything becomes zero.
A=1[26]0+1[2] A=42 \begin{aligned} \Rightarrow & \left| A \right|=1[2-6]-0+1[-2] \\\ & \left| A \right|=-4-2 \\\ \end{aligned}
Here, both the terms are negative so according to the property, minus and minus do plus and sign of minus.
A=6 A0 \begin{aligned} \Rightarrow & \left| A \right|=-6 \\\ \Rightarrow & \left| A \right|\ne 0 \\\ \end{aligned}
The determinant is not equal to zero, therefore, the inverse exists.
Now, consider A1A=I{{A}^{-1}}A=I
Place, the values of the given matrix A in the above equation
A1[101 023 121 ]=[100 010 001 ]\Rightarrow {{A}^{-1}}\left[ \begin{matrix} 1 & 0 & 1 \\\ 0 & 2 & 3 \\\ 1 & 2 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right]
Now, subtract column one from column third C3C1{{C}_{3}}-{{C}_{1}}
We get,
A1[100 023 120 ]=[101 010 001 ]\Rightarrow {{A}^{-1}}\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 2 & 3 \\\ 1 & 2 & 0 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0 & -1 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right]
Now interchange column second and third,
A1[100 032 102 ]=[110 001 010 ]\Rightarrow {{A}^{-1}}\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 3 & 2 \\\ 1 & 0 & 2 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & -1 & 0 \\\ 0 & 0 & 1 \\\ 0 & 1 & 0 \\\ \end{matrix} \right]
Now, subtract column third from second –
A1[100 012 122 ]=[110 011 010 ]\Rightarrow {{A}^{-1}}\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 2 \\\ 1 & -2 & 2 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & -1 & 0 \\\ 0 & -1 & 1 \\\ 0 & 1 & 0 \\\ \end{matrix} \right]
Now, multiply column second with two and subtract it from column third –
A1[100 010 126 ]=[112 013 012 ]\Rightarrow {{A}^{-1}}\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 1 & -2 & 6 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & -1 & 2 \\\ 0 & -1 & 3 \\\ 0 & 1 & -2 \\\ \end{matrix} \right]
Divide column third by six, (C36)(\dfrac{{{C}_{3}}}{6})
A1[100 010 121 ]=[1113 0112 0113 ]\Rightarrow {{A}^{-1}}\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 1 & -2 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & -1 & \dfrac{1}{3} \\\ 0 & -1 & \dfrac{1}{2} \\\ 0 & 1 & \dfrac{1}{-3} \\\ \end{matrix} \right]
Now, use C1C3 and C2+2C3{{C}_{1}}-{{C}_{3}}\text{ and }{{\text{C}}_{2}}+2{{C}_{3}} operations –
A1[100 010 001 ]=[231313 12012 131313 ]\Rightarrow {{A}^{-1}}\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} \dfrac{2}{3} & \dfrac{-1}{3} & \dfrac{1}{3} \\\ \dfrac{-1}{2} & 0 & \dfrac{1}{2} \\\ \dfrac{1}{3} & \dfrac{1}{3} & \dfrac{-1}{3} \\\ \end{matrix} \right]
Now, take 16\dfrac{1}{6} common from the right hand side of the equation –
A1=16[422 303 222 ]{{A}^{-1}}=\dfrac{1}{6}\left[ \begin{matrix} 4 & -2 & 2 \\\ -3 & 0 & 3 \\\ 2 & 2 & -2 \\\ \end{matrix} \right]
This is the required solution.

Note : Always read the given instructions twice, as the inverse of any matrix can be calculated by the row and column transformation. Also it can be calculated by the adjoint method. So, apply accordingly.