Question
Question: Find the inverse Laplace transform of \[G(s) = \dfrac{s}{s^{2}+2s+2}; \sigma >-1\]....
Find the inverse Laplace transform of G(s)=s2+2s+2s;σ>−1.
Solution
Use the shifting property of Laplace transform to find the inverse Laplace transform.
If L(F(t))=f(s), then by shifting property, L(eatF(t))=f(s−a).
For example, $$\mathcal{L}(e^{3t}\cos 2t) = \dfrac{s-3}{(s-3)^{2}+4}.
Complete step-by-step answer:
Given function is [G(s) = \dfrac{s}{s^{2}+2s+2}; \sigma >-1.Simplifyitintotwotermsas,\begin{align*}\dfrac{s}{s^{2}+2s+2} &= \dfrac{s}{s^{2}+2s+1+1}\\ &= \dfrac{s}{(s+1)^{2}+1}\\ &= \dfrac{s+1-1}{(s+1)^{2}+1}\\ &= \dfrac{s+1}{(s+1)^{2}+1}-\dfrac{1}{(s+1)^{2}+1}\end{align*}NowapplytheinverseLaplaceonbothsidesas,\begin{align*}\mathcal{L}^{-1}(G(s)) &= \mathcal{L}^{-1}\dfrac{s+1}{(s+1)^{2}+1}-\dfrac{1}{(s+1)^{2}+1} \\ g(t) &= \mathcal{L}^{-1}\dfrac{s+1}{(s+1)^{2}+1} -\mathcal{L}^{-1}\dfrac{1}{(s+1)^{2}+1}\end{align*}Now,\mathcal{L}(\sin at) = \dfrac{a}{s^{2}+a^{2}}and\mathcal{L}(\cos at) = \dfrac{s}{s^{2}+a^{2}}.Usingtheshiftingproperty,\mathcal{L}(e^{at}\cos bt) = \dfrac{s-a}{(s-a)^{2}+b^{2}}and\mathcal{L}(e^{at}\sin bt) = \dfrac{-a}{(s-a)^{2}+b^{2}},theinverseLaplacetransformisgivenas,\begin{align*}g(t) &= \mathcal{L}^{-1}\dfrac{s+1}{(s+1)^{2}+1} -\mathcal{L}^{-1}\dfrac{1}{(s+1)^{2}+1}\\ &= e^{-t}\cos t-e^{-t}\sin t\\ &= e^{-t}(\cos t-\sin t)\end{align*}$$
Note: Laplace transform satisfy the linear property, i.e.,
Lf(t)+g(t)=Lf(t)+Lg(t)
Laplace transform is an integral transform that converts a function of a real variable to a function of a complex variable.