Question
Mathematics Question on Applications of Derivatives
Find the intervals in which the function f given by f(x)=2+cosx4sinx−2x−x is (i)increasing (ii)decreasing
f(x)=2+cosx4sinx−2x−xcosx
∴ f′(x)=(2+cosx)2(2+cosx)(2cosx−2−cosx+xsinx)−(4sinx−2x−xcosx)(−sinx)
=(2+cosx)2(2+cosx)(3cosx−2+xsinx)+sinx(4sinx−2x−xcosx)
=(2+cosx)26cosx−4+2xsinx+3cos2x−2cosx+xsinxcosx+4sin2x−2xsinx−xsinxcosx
=(2+cosx)24cosx−4+3cos2x+4sin2x
=(2+cosx)24cosx−4+3cos2x+4−4cos2x
=(2+cosx)24cosx−cos2x
=(2+cosx)2cosx(4−cosx)
Now f′(x)=0
⇒cosx=0 or cosx=4
But, cosx≠4
∴cosx=0
⇒x=2π,23π
Now,x=2π and x=23π divides (0, 2π) into three disjoint intervals i.e.,
(0,2π),(2π,23π),and (23π,2π)
In intervals (0,2π)and (23π,2π),f′(x)>0
Thus, f(x) is increasing for 0<x<2x and 23π<x<2π
In the interval 2π,23π,f′(x)<0.
Thus, f(x) is decreasing for 2π<x<23π