Solveeit Logo

Question

Question: Find the interval in which the function given by \[f\left( x \right) = \dfrac{3}{10}x^{4} - \dfrac{4...

Find the interval in which the function given by f(x)=310x445x33x2+365x+11 f\left( x \right) = \dfrac{3}{10}x^{4} - \dfrac{4}{5}x^{3} – 3x^{2} + \dfrac{36}{5}x + 11\ is
A. Strictly increasing
B. Strictly decreasing

Explanation

Solution

In this question, we need to find the interval of the given expression f(x)=310x445x33x2+365x+11 f\left( x \right) = \dfrac{3}{10}x^{4} - \dfrac{4}{5}x^{3} – 3x^{2} + \dfrac{36}{5}x + 11\ and need to conclude that the interval of the expression is increasing or decreasing. First, we need to find the differentiation of f(x)f(x) that is f(x)f’(x). Then we check f(x)=0f’(x) = 0 . Using this we can find the value of xx and then we need to plot the value of xx in a number , in order to find the interval of f(x)f(x) .

Complete answer:
Given,
f(x)=310x445x33x2+365x+11f\left( x \right) = \dfrac{3}{10}x^{4} - \dfrac{4}{5}x^{3} – 3x^{2} + \dfrac{36}{5}x + 11
First let us differentiate the given expression f(x)f(x) .
That is f(x)=310(4x3)45(3x2)3(2x)+365+0f’\left( x \right) = \dfrac{3}{10}\left( 4x^{3} \right) - \dfrac{4}{5}\left( 3x^{2} \right) – 3\left( 2x \right) + \dfrac{36}{5} + 0
On simplifying,
We get ,
 f(x)=65x3125x26x+365\Rightarrow \ f^{‘}\left( x \right) = \dfrac{6}{5}x^{3} - \dfrac{12}{5}x^{2} – 6x + \dfrac{36}{5}
Now on taking LCM,
We get
 f(x)=(6x312x230x+365)\Rightarrow \ f’(x) = \left( \dfrac{6x^{3} – 12x^{2} – 30x + 36}{5} \right)
On taking 6 common,
We get ,
 f(x)=65(x32x25x+6)\Rightarrow \ f’\left( x \right) = \dfrac{6}{5}\left( x^{3} – 2x^{2} – 5x + 6 \right)
Now on splitting the terms in parentheses,
We get
 f(x)=65(x3x2x2+x6x+6)\Rightarrow \ f’\left( x \right) = \dfrac{6}{5}\left( x^{3} – x^{2} – x^{2} + x – 6x + 6 \right)
Now on taking (x1)(x – 1) common,
We get,
 f(x)=65(x2(x1)x(x1)6(x1))\Rightarrow \ f’\left( x \right) = \dfrac{6}{5}\left( x^{2}\left( x – 1 \right) – x\left( x – 1 \right) – 6\left( x – 1 \right) \right)
Thus we get,
 f(x)=65((x1)(x2x6))\Rightarrow \ f’\left( x \right) = \dfrac{6}{5}\left( \left( x – 1 \right)\left( x^{2} – x – 6 \right) \right)
Again on factoring the term (x2x6)\left( x^{2} – x – 6 \right)
We get,
 f(x)=65((x1)(x+2)(x3))\Rightarrow \ f’\left( x \right) = \dfrac{6}{5}\left( \left( x – 1 \right)\left( x + 2 \right)\left( x – 3 \right) \right)
On putting f(x) =0f’(x)\ = 0 ,
We get,
65((x1)(x+2)(x3))=0\dfrac{6}{5}\left( \left( x – 1 \right)\left( x + 2 \right)\left( x – 3 \right) \right) = 0
Now on multiplying both sides by 56\dfrac{5}{6},
We get,
((x1)(x+2)(x3))=0\left( \left( x – 1 \right)\left( x + 2 \right)\left( x – 3 \right) \right) = 0
Here x=1, 2, 3x = 1,\ - 2,\ 3
Now let us point the values of xx in a number line.

Values of xxIntervalsSign of f(x)=0f’(x) = 0Nature of f(x)f(x)
<x<\-2- \infty < x < \- 2(, 2)( - \infty,\ - 2)()()() <0( - )( - )( - )\ < 0Strictly decreasing
2<x<1- 2 < x < 1(2, 1)( - 2,\ 1)()(+)()>0( - )( + )( - ) > 0Strictly increasing
1<x<31 < x < 3(1, 3)(1,\ 3)(+)(+)() <0( + )( + )( - )\ < 0Strictly decreasing
3<x<3 < x < \infty(3, )(3,\ \infty)(+)(+)(+)>0( + )( + )( + ) > 0Strictly increasing

Hence f(x)f(x) is strictly increasing in the interval (2, 1)( - 2,\ 1) and (3, )(3,\ \infty)
And f(x)f(x) is strictly decreasing in the interval of (, 2)( - \infty,\ - 2) and (1, 3)(1,\ 3)
Final answer :
A. f(x)f(x) is strictly increasing in the interval (2, 1)( - 2,\ 1) and (3, )(3,\ \infty)
B. f(x)f(x) is strictly decreasing in the interval of (, 2)( - \infty,\ - 2) and (1, 3)(1,\ 3)

Note: In order to solve these types of questions, we should have a strong grip over strictly increasing and decreasing functions. We also need to know that a function is said to increase when the y-value increases as the x-value increases similarly, a function is said to be decreasing when the x-value increases as the y-value increases. We should be very careful , while splitting the intervals of the function.