Solveeit Logo

Question

Question: Find the interval in which the function \[f(x)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+5\] is A. Strictl...

Find the interval in which the function f(x)=3x44x312x2+5f(x)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+5 is
A. Strictly increasing
B. Strictly decreasing

Explanation

Solution

To solve this question, we will use the basic concept of a function to be increasing or decreasing which is given below.
A function g(x) is strictly increasing in an interval of its derivative g'(x) is strictly greater than 0 that is g(x)>0g'(x)> 0 then g(x) is strictly increasing in that interval. A function h(x) is strictly decreasing in an interval if it's derivative h'(x) is strictly less than 0.
We will put f'(x) = 0 to get required interval points and then check in all intervals if f(X)>0f(x)<0f'(X) >0\Rightarrow f'(x) <0

Complete step-by-step solution:
Given, f(x)=3x44x312x2+5f(x)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+5
A function g(x) is strictly increasing in an interval of its derivative g'(x) is strictly greater than 0 that is g(x)>0g'(x)>0 then g(x) is strictly increasing in that interval. A function h(x) is strictly decreasing in an interval if it's derivative h'(x) is strictly less than 0.
That is if h(x)<0h'(x)<0 then h(x) is strictly decreasing in that given interval.
We have, f(x)=3x44x312x2+5f(x)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+5
We have ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}
Using this above and differentiating f(x) with respect to x, we get

& \dfrac{d}{dx}f(x)=f'(x)=3\times 4{{x}^{3}}-4\times 3{{x}^{2}}-12\times 2x+0 \\\ & f'(x)=12{{x}^{3}}-12{{x}^{2}}-24x\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\\ \end{aligned}$$ To find interval of increasing or decreasing we will put f'(x) = 0 and try to get value of x possible when $f'(x) = 0$. Putting $f'(x) = 0$ $$12{{x}^{3}}-12{{x}^{2}}-24x\text{ }=\text{ }0$$ Taking 12x common from above equation, we get $$\begin{aligned} & 12\left( x \right)\left( {{x}^{2}}-x-2 \right)=0 \\\ & \Rightarrow 12x\left( {{x}^{2}}-x-2 \right)=0 \\\ \end{aligned}$$ Splitting by middle term the equation $\left( {{x}^{2}}-x-2 \right)$ by using $-2x+x=-x$ we get $$\begin{aligned} & 12x\left( {{x}^{2}}-2x+x-2 \right)=0 \\\ & 12x\left( x\left( x-2 \right)+1\left( x-2 \right) \right)=0 \\\ & \left( 12x \right)\left( x-2 \right)\left( x+1 \right)=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\\ \end{aligned}$$ So, we have three possibility of x. $$\begin{aligned} & 12x=0\Rightarrow x=0 \\\ & x-2=0\Rightarrow x=2 \\\ & x+1=0\Rightarrow x=-1 \\\ \end{aligned}$$ Hence, we will divide intervals using values of x obtained above. The intervals are $$\left( -\infty ,-1 \right),\left( -1,0 \right),\left( 0,2 \right),\left( 2,\infty \right)$$ Make this interval on the real line as below: ![](https://www.vedantu.com/question-sets/c391c1a7-37d8-449c-9caa-8289fe6de73d2433261788149954714.png) Consider equation (i) $$f'(x)=12{{x}^{3}}-12{{x}^{2}}-24x$$ Also, $$f'(x)=\left( 12x \right)\left( x-2 \right)\left( x+1 \right)$$ by equation (ii) Case I - $x\in \left( -\infty ,-1 \right)$ When $x\in \left( -\infty ,-1 \right)$ Then $$\begin{aligned} & 12x=\text{negative} \\\ & x+1\text{=negative} \\\ & x-2\text{=negative} \\\ \end{aligned}$$ So, product of all $$(12x)(x+1)(x-2)=(-)(-)(-)=(-)=\text{negative}$$ So, $f'(x)<0$ when $x\in \left( -\infty ,-1 \right)$ Case II - $x\in \left( -1,0 \right)$ When $x\in \left( -1,0 \right)$ Then $$\begin{aligned} & 12x=\text{negative} \\\ & x+1\text{=positive} \\\ & x-2\text{=negative} \\\ \end{aligned}$$ So, product of all $$(12x)(x+1)(x-2)=(-)(+)(-)=(+)=\text{Positive}$$ So, $f'(x)>0$ when $x\in \left( -1,0 \right)$ Case III - $x\in \left( 0,2 \right)$ When $x\in \left( 0,2 \right)$ Then $$\begin{aligned} & 12x=\text{positive} \\\ & x+1\text{=positive} \\\ & x-2\text{=negative} \\\ \end{aligned}$$ So product of all $$(12x)(x+1)(x-2)=(+)(+)(-)=(-)=\text{Negative}$$ So, $f'(x)<0$ when $x\in \left( 0,2 \right)$ Case IV - $x\in \left( 2,\infty \right)$ When $x\in \left( 2,\infty \right)$ Then $$\begin{aligned} & 12x=\text{positive} \\\ & x+1\text{=positive} \\\ & x-2\text{=positive} \\\ \end{aligned}$$ So product of all $$(12x)(x+1)(x-2)=(+)(+)(+)=(+)=\text{positive}$$ So, $f'(x)>0$ when $x\in \left( 2,\infty \right)$ Hence, from Case I, II, III, IV we see that $f'(x)>0$ when $x\in \left( -1,0 \right)\cup \left( 2,\infty \right)$ and $f'(x)<0$ when $x\in \left( -\infty ,-1 \right)\cup \left( 0,2 \right)$ **So, f(x) is A: strictly increasing when $x\in \left( -1,0 \right)\cup \left( 2,\infty \right)$ And B: strictly decreasing when $x\in \left( -\infty ,-1 \right)\cup \left( 0,2 \right)$** **Note:** Always remember that, because we are considering $f'(x)>0\Rightarrow f'(x)<0$ and not considering $f'(x)\ge 0\Rightarrow f'(x)\le 0$ therefore, the end points like here end point are (0, 2, -1) cannot be included in the interval. That is, we will always have open interval (a, b) and not closed interval [a, b] used in such cases as we do not have $f'(x)\ge 0\Rightarrow f'(x)\le 0$