Solveeit Logo

Question

Question: Find the integration of the function given \(\int{\left( 1-x \right)\sqrt{x}dx}\)....

Find the integration of the function given (1x)xdx\int{\left( 1-x \right)\sqrt{x}dx}.

Explanation

Solution

We start solving the problem by substituting y2{{y}^{2}} in place of x in the integral (1x)xdx\int{\left( 1-x \right)\sqrt{x}dx}. After substituting we make use of the formulas of integration xndx=xn+1n+1+C\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}in order to get the answer in variables of y. We then convert the obtained answer in terms of x from y to get the required result.

Complete step by step answer:
According to the problem, it is given that we need to find the integration of a given function (1x)xdx\int{\left( 1-x \right)\sqrt{x}dx}.
We have got (1x)xdx\int{\left( 1-x \right)\sqrt{x}dx} ---(1).
Let us assume x=y2x={{y}^{2}} ---(2).
On differentiating both sides, we get dx=d(y2)dx=d\left( {{y}^{2}} \right).
dx=2ydydx=2ydy---(3).
So, we substitute equations (2) and (3) in equation (1).
So, we have got (1x)xdx=(1y2).y2.2ydy\int{\left( 1-x \right)\sqrt{x}dx}=\int{\left( 1-{{y}^{2}} \right).\sqrt{{{y}^{2}}}.2ydy}.
We have got (1x)xdx=(1y2).y.2ydy\int{\left( 1-x \right)\sqrt{x}dx}=\int{\left( 1-{{y}^{2}} \right).y.2ydy} ---(4).
We know that af(x)dx=af(x)dx\int{af\left( x \right)dx=a\int{f\left( x \right)dx}}. We use this result in equation (4).
We have got (1x)xdx=2.(1y2).y2dy\int{\left( 1-x \right)\sqrt{x}dx}=2.\int{\left( 1-{{y}^{2}} \right).{{y}^{2}}dy}.
We have got (1x)xdx=2.(y2y4)dy\int{\left( 1-x \right)\sqrt{x}dx}=2.\int{\left( {{y}^{2}}-{{y}^{4}} \right)dy} ---(5).
We know that (a(x)+b(x))dx=a(x)dx+b(x)dx\int{\left( a\left( x \right)+b\left( x \right) \right)dx=\int{a\left( x \right)dx+\int{b\left( x \right)dx}}}. We use this result in equation (5)
We have got (1x)xdx=2(y2dyy4dy)\int{\left( 1-x \right)\sqrt{x}dx}=2\left( \int{{{y}^{2}}dy}-\int{{{y}^{4}}dy} \right) ---(6).
We know that the integration is defined asxndx=xn+1n+1+C\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}. We use this result in equation (6).
We have got (1x)xdx=2(y33y55)+C\int{\left( 1-x \right)\sqrt{x}dx}=2\left( \dfrac{{{y}^{3}}}{3}-\dfrac{{{y}^{5}}}{5} \right)+C.
We have got (1x)xdx=2y332y55+C\int{\left( 1-x \right)\sqrt{x}dx}=\dfrac{2{{y}^{3}}}{3}-\dfrac{2{{y}^{5}}}{5}+C ---(7).
From equation (2), We have got x=y2x={{y}^{2}}.
We have got y=xy=\sqrt{x}.
We have got y=x12y={{x}^{\dfrac{1}{2}}} ---(8).
We substitute the result of equation (8) in equation (7).
We have got (1x)xdx=2(x12)332(x12)55+C\int{\left( 1-x \right)\sqrt{x}dx}=\dfrac{2{{\left( {{x}^{\dfrac{1}{2}}} \right)}^{3}}}{3}-\dfrac{2{{\left( {{x}^{\dfrac{1}{2}}} \right)}^{5}}}{5}+C ---(9).
We know that (am)n=am×n{{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}}, we use this result in equation (9).
We have got (1x)xdx=2x3232x525+C\int{\left( 1-x \right)\sqrt{x}dx}=\dfrac{2{{x}^{\dfrac{3}{2}}}}{3}-\dfrac{2{{x}^{\dfrac{5}{2}}}}{5}+C.
We have found the integration of the function (1x)xdx\int{\left( 1-x \right)\sqrt{x}dx} as 2x3232x525+C\dfrac{2{{x}^{\dfrac{3}{2}}}}{3}-\dfrac{2{{x}^{\dfrac{5}{2}}}}{5}+C.
∴ The integration of the function (1x)xdx\int{\left( 1-x \right)\sqrt{x}dx} is 2x3232x525+C\dfrac{2{{x}^{\dfrac{3}{2}}}}{3}-\dfrac{2{{x}^{\dfrac{5}{2}}}}{5}+C.

Note:
We should not forget to add the arbitrary constant after integrating any function. Alternatively, we can solve the problem as follows:
We have got (1x)xdx=(x12x32)dx\int{\left( 1-x \right)\sqrt{x}dx}=\int{\left( {{x}^{\dfrac{1}{2}}}-{{x}^{\dfrac{3}{2}}} \right)}dx.
We have got (1x)xdx=x12dxx32dx\int{\left( 1-x \right)\sqrt{x}dx}=\int{{{x}^{\dfrac{1}{2}}}dx-\int{{{x}^{\dfrac{3}{2}}}}dx}.
We have got (1x)xdx=x12+112+1x32+132+1+C\int{\left( 1-x \right)\sqrt{x}dx}=\dfrac{{{x}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}-\dfrac{{{x}^{\dfrac{3}{2}+1}}}{\dfrac{3}{2}+1}+C.
We have got (1x)xdx=x3232x5252+C\int{\left( 1-x \right)\sqrt{x}dx}=\dfrac{{{x}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}-\dfrac{{{x}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}+C.
We have got (1x)xdx=2x3232x525+C\int{\left( 1-x \right)\sqrt{x}dx}=\dfrac{2{{x}^{\dfrac{3}{2}}}}{3}-\dfrac{2{{x}^{\dfrac{5}{2}}}}{5}+C.
∴ The integration of the function (1x)xdx\int{\left( 1-x \right)\sqrt{x}dx} is 2x3232x525+C\dfrac{2{{x}^{\dfrac{3}{2}}}}{3}-\dfrac{2{{x}^{\dfrac{5}{2}}}}{5}+C.