Solveeit Logo

Question

Question: Find the integration of the following function with respect to\(x\) :\(f(x) = \sqrt {2x - {x^2}} \)...

Find the integration of the following function with respect toxx :f(x)=2xx2f(x) = \sqrt {2x - {x^2}}

Explanation

Solution

We have to solve the given integral using standard integration formulae but firstly we simplify the function into easier form in order to solve it. We convert the expression into standard algebraic expression using manipulation.

Complete solution step by step:
Firstly we write down the function given in the question:
f(x)=2xx2f\left( x \right) = \sqrt {2x - {x^2}}
As we can see the degree of the expression is two so we change it into standard algebraic expression like this
2xx2=11+2xx2=1(12x+x2)Expansionofstandardidentity=1(x1)22x - {x^2} = 1 - 1 + 2x - {x^2} = 1 - \underbrace {\left( {1 - 2x + {x^2}} \right)}_{{\text{Expansion}}\,{\text{of}}\,{\text{standard}}\,{\text{identity}}} = 1 - {\left( {x - 1} \right)^2}
Now we take the function as an integral with respect to xx like this
I=2xx2dx=1(x1)2dxI = \int {\sqrt {2x - {x^2}} } dx = \int {\sqrt {1 - {{\left( {x - 1} \right)}^2}} dx}
So we take substitution method of integration and let
s=x1,ds=dxs = x - 1, \Rightarrow ds = dx
Putting these values into the above equation
I=1(x1)2dx=1s2dsI = \int {\sqrt {1 - {{\left( {x - 1} \right)}^2}} } dx = \int {\sqrt {1 - {s^2}} } ds
We know that 1sin2x=cos2x1 - {\sin ^2}x = {\cos ^2}x so we put s=sinθ,ds=cosθdθs = \sin \theta , \Rightarrow ds = \cos \theta d\theta these values into the above equation
I=1s2ds=1sin2θcosθdθ=cosθ×cosθdθ I=cos2θdθ  I = \int {\sqrt {1 - {s^2}} } ds = \int {\sqrt {1 - {{\sin }^2}\theta } } \cos \theta d\theta = \int {\cos \theta \times \cos \theta d\theta } \\\ I = \int {{{\cos }^2}\theta d\theta } \\\
Using the following trigonometric identity and putting value
cos2θ=2cos2θ1 cos2θ=cos2θ+12  \cos 2\theta = 2{\cos ^2}\theta - 1 \\\ \Rightarrow {\cos ^2}\theta = \dfrac{{\cos 2\theta + 1}}{2} \\\
So we have
I=(cos2θ+12)dθ=12(cos2θ+1)dθI = \int {\left( {\dfrac{{\cos 2\theta + 1}}{2}} \right)d\theta = } \dfrac{1}{2}\int {\left( {\cos 2\theta + 1} \right)d\theta }
We know thatcosθ=sinθ\int {\cos \theta = \sin \theta } . So we have
I=12[cos2θdθ+dθ] I=12(sin2θ2+θ) I=sin2θ4+θ2  I = \dfrac{1}{2}\left[ {\int {\cos 2\theta d\theta + \int {d\theta } } } \right] \\\ \Rightarrow I = \dfrac{1}{2}\left( {\dfrac{{\sin 2\theta }}{2} + \theta } \right) \\\ \Rightarrow I = \dfrac{{\sin 2\theta }}{4} + \dfrac{\theta }{2} \\\
Now we use the trigonometric identity of sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta and put it in the above equation
I=2sinθcosθ4+θ2=sinθcosθ2+θ2I = \dfrac{{2\sin \theta \cos \theta }}{4} + \dfrac{\theta }{2} = \dfrac{{\sin \theta \cos \theta }}{2} + \dfrac{\theta }{2}
We had already taken s=sinθ,sin1(s)=θs = \sin \theta , \Rightarrow {\sin ^{ - 1}}\left( s \right) = \theta and hence we have
I=s1s22+sin1(s)2I = \dfrac{{s\sqrt {1 - {s^2}} }}{2} + \dfrac{{{{\sin }^{ - 1}}\left( s \right)}}{2}
Now we substitute back the value of s=x1s = x - 1 in the equation
I=(x1)1(x1)22+sin1(x\-1)2+C I=(x1)2xx22+sin1(x1)2+C  I = \dfrac{{\left( {x - 1} \right)\sqrt {1 - {{\left( {x - 1} \right)}^2}} }}{2} + \dfrac{{{{\sin }^{ - 1}}\left( {x \- 1} \right)}}{2} + C \\\ I = \dfrac{{\left( {x - 1} \right)\sqrt {2x - {x^2}} }}{2} + \dfrac{{{{\sin }^{ - 1}}\left( {x - 1} \right)}}{2} + C \\\
Here CC is the integral constant which is obtained when we evaluate indefinite integral that is integration without limits.
Additional information: To find the exact or explicit solution we must apply integration limits and then we get the value of CC and after putting it in the integral value we get the final solution.

Note: We used the method of integration by substitution here in the question where we manipulate the expression by assuming a value of the given expression then we simplify it until we get a standard form to solve the expression by using integration formulae.