Solveeit Logo

Question

Question: Find the integration of the following. \( \int {\dfrac{{{\text{se}}{{\text{c}}^2}x}}{{{{(\s...

Find the integration of the following.
sec2x(secx+tanx)92dx equals A. 1(secx+tanx)11211117(secx+tanx)2+K B. 1(secx+tanx)11211117(secx+tanx)2+K C. 1(secx+tanx)112111+17(secx+tanx)+K D. None of the above  \int {\dfrac{{{\text{se}}{{\text{c}}^2}x}}{{{{(\sec x + \tan x)}^{\dfrac{9}{2}}}}}} dx{\text{ equals}} \\\ {\text{A}}{\text{. }} - \dfrac{1}{{{{(\sec x + \tan x)}^{\dfrac{{11}}{2}}}}}\\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\\} + K \\\ {\text{B}}{\text{. }}\dfrac{1}{{{{(\sec x + \tan x)}^{\dfrac{{11}}{2}}}}}\\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\\} + K \\\ {\text{C}}{\text{. }} - \dfrac{1}{{{{(\sec x + \tan x)}^{\dfrac{{11}}{2}}}}}\\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^{}}\\} + K \\\ {\text{D}}{\text{. None of the above}} \\\

Explanation

Solution

In this question first we have to let secx + tanx = t \sec x{\text{ + }}\tan x{\text{ = t }}then using trigonometric relations we convert the given question into simpler form like xndx\int {{x^n}dx} and then integrate it using formula xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} to get answer in term of t then we substitute of t equal tosecx + tanx \sec x{\text{ + }}\tan x{\text{ }}for getting answer in terms of xx

Complete step-by-step answer:
Let I = sec2x(secx+tanx)92dx eq.1{\text{Let I = }}\int {\dfrac{{{\text{se}}{{\text{c}}^2}x}}{{{{(\sec x + \tan x)}^{\dfrac{9}{2}}}}}} dx{\text{ eq}}{\text{.1}}
Now, again let secx + tanx = t\sec x{\text{ + }}\tan x{\text{ = t}} eq.2
We know, sec2xtan2x=1{\text{se}}{{\text{c}}^2}x - {\text{ta}}{{\text{n}}^2}x = 1

 (secx+tanx)(secxtanx)=1   t(secxtanx)=1  from eq.1  (secxtanx)=1t eq.3   \Rightarrow {\text{ }}(\sec x + \tan x)(\sec x - \tan x) = 1{\text{ }} \\\ \Rightarrow {\text{ t}}(\sec x - \tan x) = 1{\text{ \\{ }}\therefore {\text{from eq}}{\text{.1\\} }} \\\ \Rightarrow {\text{ }}(\sec x - \tan x) = \dfrac{1}{{\text{t}}}{\text{ eq}}{\text{.3 }} \\\

Add eq.2 and eq.3 we get

 (secxtanx)+(secx + tanx)=1t + t   secx+secx=1t + t  secx=12(1t + t) eq.4  \Rightarrow {\text{ }}(\sec x - \tan x) + (\sec x{\text{ + }}\tan x) = \dfrac{1}{{\text{t}}}{\text{ + t }} \\\ \Rightarrow {\text{ }}\sec x + \sec x = \dfrac{1}{{\text{t}}}{\text{ + t}} \\\ \Rightarrow {\text{ }}\sec x = \dfrac{1}{2}(\dfrac{1}{{\text{t}}}{\text{ + t) eq}}{\text{.4}} \\\

We know the differentiation of secx = secxtanx\sec x{\text{ = }}\sec x\tan xand of tanx=sec2x \tan x = {\sec ^2}x{\text{ }}
Then, we apply dxdt\dfrac{{dx}}{{dt}} on eq.2, we get
 (secxtanx+sec2x)dx=dt\Rightarrow {\text{ }}(\sec x\tan x + {\sec ^2}x)dx = dt
On taking secx\sec x common from above equation, we get

 secx(tanx+secx)dx=dt  secxdx=dt(tanx+secx)  secxdx=dtt  from eq.2eq.5  \Rightarrow {\text{ }}\sec x(\tan x + \sec x)dx = dt \\\ \Rightarrow {\text{ }}\sec xdx = \dfrac{{dt}}{{(\tan x + \sec x)}} \\\ \Rightarrow {\text{ }}\sec xdx = \dfrac{{dt}}{{\text{t}}}{\text{ \\{ }}\therefore {\text{from eq}}{\text{.2\\} eq}}{\text{.5}} \\\

Now with the help of eq.2, eq.3, eq.4, we can rewrite eq.1 as
 I = 12(t + 1t)t92dtt\Rightarrow {\text{ I = }}\int {\dfrac{1}{2}\dfrac{{({\text{t + }}\dfrac{1}{{\text{t}}})}}{{{{\text{t}}^{\dfrac{9}{2}}}}}\dfrac{{dt}}{{\text{t}}}}
On simplifying the above equation
 I = 12(t92 + t132)dt\Rightarrow {\text{ I = }}\dfrac{1}{2}\int {({{\text{t}}^{\dfrac{{ - 9}}{2}}}{\text{ + }}{{\text{t}}^{\dfrac{{ - 13}}{2}}})dt}
We know, xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}
Then,

 I = 12(t92+192+1) + (t132+1132+1) + K  I = 12(t7272) + (t112112) + K  I = (t727) + (t11211) + K  \Rightarrow {\text{ I = }}\dfrac{1}{2}\\{ (\dfrac{{{{\text{t}}^{\dfrac{{ - 9}}{2} + 1}}}}{{^{\dfrac{{ - 9}}{2} + 1}}}{\text{) + (}}\dfrac{{{{\text{t}}^{\dfrac{{ - 13}}{2} + 1}}}}{{^{\dfrac{{ - 13}}{2} + 1}}})\\} {\text{ + }}K \\\ \Rightarrow {\text{ I = }}\dfrac{1}{2}\\{ (\dfrac{{{{\text{t}}^{\dfrac{{ - 7}}{2}}}}}{{^{\dfrac{{ - 7}}{2}}}}{\text{) + (}}\dfrac{{{{\text{t}}^{\dfrac{{ - 11}}{2}}}}}{{^{\dfrac{{ - 11}}{2}}}})\\} {\text{ + }}K \\\ \Rightarrow {\text{ I = }} - \\{ (\dfrac{{{{\text{t}}^{\dfrac{{ - 7}}{2}}}}}{7}{\text{) + (}}\dfrac{{{{\text{t}}^{\dfrac{{ - 11}}{2}}}}}{{{{11}^{}}}})\\} {\text{ + }}K \\\

On taking t112{{\text{t}}^{\dfrac{{ - 11}}{2}}} common from above equation, we get
 I = t112(t27) + (111) + K\Rightarrow {\text{ I = }} - {{\text{t}}^{\dfrac{{ - 11}}{2}}}\\{ (\dfrac{{{{\text{t}}^2}}}{7}{\text{) + (}}\dfrac{1}{{{{11}^{}}}})\\} {\text{ + }}K
Now, put t = secx + tanx{\text{t = }}\sec x{\text{ + }}\tan x from eq.2, we get

 I = 1(secx + tanx)112(secx + tanx)27 + 111 + K sec2x(secx+tanx)92dx = 1(secx + tanx)112(secx + tanx)27 + 111 + K  \Rightarrow {\text{ I = }} - \dfrac{1}{{{{(\sec x{\text{ + }}\tan x)}^{\dfrac{{11}}{2}}}}}\\{ \dfrac{{{{(\sec x{\text{ + }}\tan x)}^2}}}{7}{\text{ + }}\dfrac{1}{{{{11}^{}}}}\\} {\text{ + }}K \\\ \Rightarrow \int {\dfrac{{{\text{se}}{{\text{c}}^2}x}}{{{{(\sec x + \tan x)}^{\dfrac{9}{2}}}}}} dx{\text{ = }} - \dfrac{1}{{{{(\sec x{\text{ + }}\tan x)}^{\dfrac{{11}}{2}}}}}\\{ \dfrac{{{{(\sec x{\text{ + }}\tan x)}^2}}}{7}{\text{ + }}\dfrac{1}{{{{11}^{}}}}\\} {\text{ + }}K \\\

So, the correct answer is “Option D”.

Note: Whenever you get this type of problem the key concept of solving is to observe the trigonometric functions involved in it. And what to let as in this question we letting the secx + tanx \sec x{\text{ + }}\tan x{\text{ }}= t to convert expression into some simpler expression of which we know the integration (xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} ). And one more thing, at least on obtaining an answer in terms of letting variables you have to put its value that you let at the starting of the question.