Solveeit Logo

Question

Question: Find the integration of \(\int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx} \)....

Find the integration of 1x2x(12x)dx\int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx} .

Explanation

Solution

Hint: In this question first of all multiply and divide with 2 both in numerator and denominator to break the integration into a simplified form. Use the concept of partial fractions to resolve the integration further to simply it.

Complete step-by-step answer:

Let I=1x2x(12x)dxI = \int {\dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}dx}
Multiply and divide by 2 in the integral we get,
I=22x22x(12x)dx=2x222x(2x1)dxI = \int {\dfrac{{2 - 2{x^2}}}{{2x\left( {1 - 2x} \right)}}dx} = \int {\dfrac{{2{x^2} - 2}}{{2x\left( {2x - 1} \right)}}dx}
Now the above integral is also written as
I=(x22x(2x1)+12)dx\Rightarrow I = \int {\left( {\dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} + \dfrac{1}{2}} \right)dx}, [2x222x(2x1)=x22x(2x1)+12]\left[ {\because \dfrac{{2{x^2} - 2}}{{2x\left( {2x - 1} \right)}} = \dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} + \dfrac{1}{2}} \right]
Apply partial fraction
So let,
x22x(2x1)=A2x+B2x1\dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} = \dfrac{A}{{2x}} + \dfrac{B}{{2x - 1}}
x2=A(2x1)+B(2x)\Rightarrow x - 2 = A\left( {2x - 1} \right) + B\left( {2x} \right)
Now comparing the terms we have,
2A+2B=1\Rightarrow 2A + 2B = 1……………………… (1) (Comparing x terms)
And A=2A=2 - A = - 2 \Rightarrow A = 2
So from equation (1) we have,
2(2)+2B=1 2B=14=3 B=32 \begin{gathered} \Rightarrow 2\left( 2 \right) + 2B = 1 \\\ \Rightarrow 2B = 1 - 4 = - 3 \\\ \Rightarrow B = \dfrac{{ - 3}}{2} \\\ \end{gathered}
x22x(2x1)=22x+322x1\Rightarrow \dfrac{{x - 2}}{{2x\left( {2x - 1} \right)}} = \dfrac{2}{{2x}} + \dfrac{{\dfrac{{ - 3}}{2}}}{{2x - 1}}
So the integral becomes
I=(22x+322x1+12)dx\Rightarrow I = \int {\left( {\dfrac{2}{{2x}} + \dfrac{{\dfrac{{ - 3}}{2}}}{{2x - 1}} + \dfrac{1}{2}} \right)dx}
I=(1x32(2x1)+12)dx\Rightarrow I = \int {\left( {\dfrac{1}{x} - \dfrac{3}{{2\left( {2x - 1} \right)}} + \dfrac{1}{2}} \right)dx}
Now integrate the above equation we have, as we know integration of 1x\dfrac{1}{x} is ln x and integration of 1ax+b\dfrac{1}{{ax + b}} is ln(ax+b)a\dfrac{{\ln \left( {ax + b} \right)}}{a} so use these properties we have,
I=lnx32(ln(2x1)2)+12(x)+c\Rightarrow I = \ln x - \dfrac{3}{2}\left( {\dfrac{{\ln \left( {2x - 1} \right)}}{2}} \right) + \dfrac{1}{2}\left( x \right) + c, where c is some arbitrary integration constant.
So this is the required value of the integration.

Note: Whenever we face such types of problems the key concept is to have a good grasp over the standard integration form just like integration of 1x\dfrac{1}{x} is ln x. This always helps after simplification of the integral to get the right answer.