Solveeit Logo

Question

Question: Find the integration of given trigonometric function \(\int {\dfrac{{dx}}{{\left( {\operatorname{Sin...

Find the integration of given trigonometric function dx(Sinx+Cosx)\int {\dfrac{{dx}}{{\left( {\operatorname{Sin} x + \operatorname{Cos} x} \right)}}}
A. logtan(π8+x2)+C\log \tan \left( {\dfrac{\pi }{8} + \dfrac{x}{2}} \right) + C
B. logtan(π8x2)+C\log \tan \left( {\dfrac{\pi }{8} - \dfrac{x}{2}} \right) + C
C. 12logtan(π8+x2)+C\dfrac{1}{{\sqrt 2 }}\log \tan \left( {\dfrac{\pi }{8} + \dfrac{x}{2}} \right) + C

Explanation

Solution

First of all we have to multiply by 12\dfrac{1}{{\sqrt 2 }} in numerator and denominator both to make the formula of Sin(a+b)\operatorname{Sin} (a + b) that are mentioned below:

Formula used:
Sin(a+b)=Sina.cosb+cosa.sinb............................(A)\Rightarrow \operatorname{Sin} (a + b) = \operatorname{Sin} a.\cos b + \cos a.\sin b............................(A)
Now, we have to take Sin(a+b)\operatorname{Sin} (a + b)form to the numerator then we have to apply the formula of cosecxdx\int {\cos ecxdx} that are mentioned below:
1sin(a+b)=cosec(a+b)......................(B)\Rightarrow \dfrac{1}{{\sin (a + b)}} = \cos ec(a + b)......................(B)
cosecxdx=logcosecx+cotx+C..........................................(C)\Rightarrow \int {\cos ecxdx = } - \log \left| {\cos ecx + \cot x} \right| + C..........................................(C)

Complete step by step answer:
Step 1: First of all we have to let the given integration equal to I, that is mentioned below:
I=dx(Sinx+cosx)\Rightarrow I = \int {\dfrac{{dx}}{{(\operatorname{Sin} x + \cos x)}}}
Now, we have to to multiply by 12\dfrac{1}{{\sqrt 2 }} in numerator and denominator that are mentioned below:
I=12dx12(Sinx+cosx) I=12dxsinx.12+cosx.12  \Rightarrow I = \int {\dfrac{{\dfrac{1}{{\sqrt 2 }}dx}}{{\dfrac{1}{{\sqrt 2 }}(\operatorname{Sin} x + \cos x)}}} \\\ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{dx}}{{\sin x.\dfrac{1}{{\sqrt 2 }} + \cos x.\dfrac{1}{{\sqrt 2 }}}}} \\\
Step 2: We know that 12\dfrac{1}{{\sqrt 2 }} is equal to sin(π4)\sin \left( {\dfrac{\pi }{4}} \right) and cos(π4)\cos \left( {\dfrac{\pi }{4}} \right) both. So, we have to make the above expression in the formula of Sin(a+b)\operatorname{Sin} (a + b), that are expressed below:
I=12dxsinx.cos(π4)+cosx.sin(π4)\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{dx}}{{\sin x.\cos \left( {\dfrac{\pi }{4}} \right) + \cos x.\sin \left( {\dfrac{\pi }{4}} \right)}}}
Now, we use the formula (A) on the denominator,
I=12dxsin(x+π4)\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\int {\dfrac{{dx}}{{\sin \left( {x + \dfrac{\pi }{4}} \right)}}}

Step 3: Now, we convert denominator into numerator by applying formula (B) that are mentioned in the solution hint,
I=12cosec(x+π4)dx\Rightarrow I = \dfrac{1}{{\sqrt 2 }}\int {\cos ec\left( {x + \dfrac{\pi }{4}} \right)} dx
Step 4: Now, we use the formula (C) in the expression mentioned in step 3 to obtain the final value of the given integration.
I=(12)logcosec(x+π4)+cot(x+π4)+C\Rightarrow I = \left( {\dfrac{1}{{\sqrt 2 }}} \right) - \log \left| {\cos ec\left( {x + \dfrac{\pi }{4}} \right) + \cot \left( {x + \dfrac{\pi }{4}} \right)} \right| + C

Hence, with the help of formulas (A) and (B) we have determined the integration of the given function which is as dx(Sinx+Cosx)\int {\dfrac{{dx}}{{\left( {\operatorname{Sin} x + \operatorname{Cos} x} \right)}}} =(12)logcosec(x+π4)+cot(x+π4)+C = \left( {\dfrac{1}{{\sqrt 2 }}} \right) - \log \left| {\cos ec\left( {x + \dfrac{\pi }{4}} \right) + \cot \left( {x + \dfrac{\pi }{4}} \right)} \right| + C. Therefore option (C) is correct.

Note: To find the integration of the function it is necessary that we have to convert the given trigonometric function cosec(a+b)\cos ec(a + b) in sin(a+b)\sin (a + b).
To obtain or convert in the form of formula Sin(a+b)\operatorname{Sin} (a + b) we have to multiply with 12\dfrac{1}{{\sqrt 2 }} in the numerator and denominator of the function given.