Solveeit Logo

Question

Question: Find the integration:- \[\int_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log \sin 2x} \right)} dx\...

Find the integration:- 0π2(2logsinxlogsin2x)dx\int_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log \sin 2x} \right)} dx

Explanation

Solution

Here we need to find the value of the given definite integral. For that, we will first simplify the terms inside the bracket. We will first use the basic trigonometric identities and then we will use the properties of the logarithmic function. We will also use the basic properties of definite integrals to simplify it. From there, we will get the simplified term, and we will then integrate it to get the final solution.

Complete step-by-step answer:
We need to find the value of 0π2(2logsinxlogsin2x)dx\int_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log \sin 2x} \right)} dx
Let II be the required definite integration.
I=0π2(2logsinxlogsin2x)dx\Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log \sin 2x} \right)} dx ………. (1)\left( 1 \right)
We know from the trigonometric identities that sin2x=2sinxcosx\sin 2x = 2 \cdot \sin x \cdot \cos x.
Using this identity in equation (1)\left( 1 \right), we get
I=0π2(2logsinxlog2sinxcosx)dx\Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log 2 \cdot \sin x \cdot \cos x} \right)} dx
We know the property of logarithm that logab=loga+logb\log ab = \log a + \log b .
We will use this property here, we get
I=0π2(2logsinxlog2logsinxlogcosx)dx\Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log 2 - \log \sin x - \log \cos x} \right)} dx
On further simplifying the terms present inside the bracket, we get
I=0π2(logsinxlog2logcosx)dx\Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\left( {\log \sin x - \log 2 - \log \cos x} \right)} dx
We can write this equation as
I=0π2logsinx.dx0π2log2.dx0π2logcosx.dx\Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\log \sin x.dx - \int_0^{\dfrac{\pi }{2}} {\log 2.dx} - \int_0^{\dfrac{\pi }{2}} {\log \cos x} } .dx
We can one property of definite integral that 0af(x)dx=0af(ax)dx\int_0^a {f\left( x \right)dx = \int_0^a {f\left( {a - x} \right)dx} }
Using this property for the third term, we get
I=0π2logsinx.dx0π2log2.dx0π2logcos(π2x).dx\Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\log \sin x.dx - \int_0^{\dfrac{\pi }{2}} {\log 2.dx} - \int_0^{\dfrac{\pi }{2}} {\log \cos \left( {\dfrac{\pi }{2} - x} \right)} } .dx
We know from periodic identities that cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x.
Using this identity for the third term, we get
I=0π2logsinx0π2log20π2logsinx\Rightarrow I = \int_0^{\dfrac{\pi }{2}} {\log \sin x - \int_0^{\dfrac{\pi }{2}} {\log 2} - \int_0^{\dfrac{\pi }{2}} {\log \sin x} }
On further simplification, we get
I=0π2log2.dx\Rightarrow I = - \int_0^{\dfrac{\pi }{2}} {\log 2} .dx
Taking constant out of the integration, we get
I=log20π21.dx\Rightarrow I = - \log 2\int_0^{\dfrac{\pi }{2}} 1 .dx
On integrating the term, we get
I=log2[x]0π2\Rightarrow I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}
On simplifying the term, we get
I=log2(π20)\Rightarrow I = - \log 2\left( {\dfrac{\pi }{2} - 0} \right)
On further simplification, we get
I=π2log2\Rightarrow I = - \dfrac{\pi }{2}\log 2
Hence, the value of 0π2(2logsinxlogsin2x)dx\int_0^{\dfrac{\pi }{2}} {\left( {2\log \sin x - \log \sin 2x} \right)} dx is equal to π2log2 - \dfrac{\pi }{2}\log 2.

Note: Here, we need to be careful while integrating and therefore we need to know the basics of integration. Integration is a method by which we can find summation of discrete data.
While solving this question we might make a mistake by leaving the answer at I=log2[x]0π2I = - \log 2\left[ x \right]_0^{\dfrac{\pi }{2}}. This will be wrong because this is a question of definite integral and not an infinite integral. So, we need to substitute the limits to find the required answer.