Question
Mathematics Question on integral
Find the integrals of the function: tan4x
Answer
tan4x
=tan2 x. tan2 x
=(sec2 x-1)tan2 x
=sec2 x tan2 x-tan2 x
=sec2 x tan2 x-(sec2 x-1)
= sec2 x tan2 x-sec2 x+1
∴ ∫tan4 x dx = ∫sec2 xtan2 x dx- ∫sec2 x dx+ ∫1.dx
= ∫sec2 x tan2 x dx-tan x +x+C ...(1)
Consider ∫sec2 x tan2 x dx
Let tan x = t ⇒ sec2 x dx = dt
⇒ ∫sec2 x tan2 xdx = ∫t2dt =3t3=3tan3x
From equation (1), we obtain
∫tan4xdx=31tan3x−tanx+x+C