Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: tan4xtan^4x

Answer

tan4x
=tan2 x. tan2 x
=(sec2 x-1)tan2 x
=sec2 x tan2 x-tan2 x
=sec2 x tan2 x-(sec2 x-1)
= sec2 x tan2 x-sec2 x+1

∴ ∫tan4 x dx = ∫sec2 xtan2 x dx- ∫sec2 x dx+ ∫1.dx
= ∫sec2 x tan2 x dx-tan x +x+C ...(1)

Consider ∫sec2 x tan2 x dx
Let tan x = t ⇒ sec2 x dx = dt
⇒ ∫sec2 x tan2 xdx = ∫t2dt =t33=tan3x3= \frac{t^3}{3} = \frac{tan^3x}{3}
From equation (1), we obtain
tan4xdx=13tan3xtanx+x+C∫tan^4 x dx = \frac{1}{3} tan^3 x-tan x +x+C