Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: tan32xsec2xtan^3 2x\, sec 2x

Answer

tan3 2x sec 2x = tan2 2x tan 2x sec 2x
=(sec2 2x-1)tan 2x sec 2x
=sec2 2x.tan 2x sec 2x-tan 2x sec 2x
∴ ∫tan3 2x sec 2x dx = ∫sec2 2x tan 2x sec 2x dx - ∫tan 2x sec 2x dx
= ∫sec2 2x tan 2x sec 2x dx-sec2x2\frac{sec2x}{2}+C
Let sec 2x = t
∴ 2sec 2x tan 2x dx = dt
∴ ∫tan3 2x sec 2x dx = 12\frac{1}{2} ∫t2dt-sec2x2\frac{sec2x}{2}+C
=(t36)sec2x2+C= (\frac{t^3}{6}) -\frac{sec2x}{2}+C
=(sec2x)36(sec2x2)+C=\frac{(sec2x)^3}{6}- (\frac{sec2x}{2}) +C