Question
Mathematics Question on integral
Find the integrals of the function: tan32xsec2x
Answer
tan3 2x sec 2x = tan2 2x tan 2x sec 2x
=(sec2 2x-1)tan 2x sec 2x
=sec2 2x.tan 2x sec 2x-tan 2x sec 2x
∴ ∫tan3 2x sec 2x dx = ∫sec2 2x tan 2x sec 2x dx - ∫tan 2x sec 2x dx
= ∫sec2 2x tan 2x sec 2x dx-2sec2x+C
Let sec 2x = t
∴ 2sec 2x tan 2x dx = dt
∴ ∫tan3 2x sec 2x dx = 21 ∫t2dt-2sec2x+C
=(6t3)−2sec2x+C
=6(sec2x)3−(2sec2x)+C