Question
Mathematics Question on integral
Find the integrals of the function: sinxsin2xsin3x
Answer
The correct answer is: =81[3cos6x−2cos4x−cos2x]+C
It is known that, sinAsinB=21cos(A−B)−cos(A+B)
∴∫sinxsin2xsin3x.dx=∫[sinx.21cos(2x−3x)−cos(2x+3x)]dx
=21∫(sinxcos(−x)−sinxcos5x)dx
=21∫(sinxcosx−sinxcos5x)dx
=21∫2sin2x.dx−21∫sinxcos5x.dx
=41[2−cos2x]−21∫21sin(x+5x)+sin(x−5x)dx
=8−cos2x−41∫(sin6x+sin(−4x))dx
=8−cos2x−41[3−cos6x+4cos4x]+C
=8−cos2x−81[3−cos6x+2cos4x]+C
=81[3cos6x−2cos4x−cos2x]+C