Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sinxsin2xsin3xsin\, x\,\, sin\, 2x\,\, sin\, 3x

Answer

The correct answer is: =18[cos6x3cos4x2cos2x]+C= \frac{1}{8}[\frac{cos6x}{3}-\frac{cos4x}{2}-cos2x]+C
It is known that, sinAsinB=12cos(AB)cos(A+B)sin A\, sin B = \frac{1}{2}{cos(A-B)-cos(A+B)}
sinxsin2xsin3x.dx=[sinx.12cos(2x3x)cos(2x+3x)]dx∴ ∫sin\, x\,\, sin\, 2x\,\, sin\, 3x. dx = ∫[sin x.\frac{1}{2}{cos(2x-3x)-cos(2x+3x)}]dx
=12(sinxcos(x)sinxcos5x)dx= \frac{1}{2}∫(sinx\, cos(-x)-sinx\, cos\,5x)dx
=12(sinxcosxsinxcos5x)dx= \frac{1}{2} ∫(sinx\,cosx-sinx\,cos5x)dx
=12sin2x2.dx12sinxcos5x.dx= \frac{1}{2} ∫\frac{sin2x}{2}. dx -\frac{1}{2} ∫sin x\, cos5x. dx
=14[cos2x2]1212sin(x+5x)+sin(x5x)dx= \frac{1}{4}[\frac{-cos2x}{2}]-\frac{1}{2} ∫{\frac{1}{2}sin(x+5x)+sin(x-5x)}dx
=cos2x814(sin6x+sin(4x))dx= \frac{-cos2x}{8}-\frac{1}{4} ∫(sin6x+sin(-4x))dx
=cos2x814[cos6x3+cos4x4]+C=\frac{-cos2x}{8}-\frac{1}{4}[\frac{-cos6x}{3}+\frac{cos4x}{4}]+C
=cos2x818[cos6x3+cos4x2]+C=\frac{-cos2x}{8}-\frac{1}{8}[\frac{-cos6x}{3}+\frac{cos4x}{2}]+C
=18[cos6x3cos4x2cos2x]+C= \frac{1}{8}[\frac{cos6x}{3}-\frac{cos4x}{2}-cos2x]+C