Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sin4xsin8xsin\, 4x\,\, sin\, 8x

Answer

The correct answer is: 12[sin4x4sin12x12] \frac{1}{2}[\frac{sin4x}{4}-\frac{sin12x}{12}]
It is known that, sinAsinB=12cos(AB)cos(A+B)sin A\, sin B = \frac{1}{2}cos(A-B)-cos(A+B)
sin4xsin8x.dx=[12cos(4x8x)cos(4x+8x)]dx∴ ∫sin4x\,sin8x. dx = ∫[\frac{1}{2}cos(4x-8x)-cos(4x+8x)]dx
=12(cos(4x)cos12x)dx= \frac{1}{2} ∫(cos(-4x)-cos12x) dx
=12(cos4xcos12x)dx= \frac{1}{2} ∫(cos4x-cos12x) dx
=12[sin4x4sin12x12]= \frac{1}{2}[\frac{sin4x}{4}-\frac{sin12x}{12}]