Question
Mathematics Question on integral
Find the integrals of the function: sin4x
Answer
sin4 x = sin2 x sin2 x
=(21−cos2x)(21−cos2x)
=41(1-cos2x)2
=41[1+cos22x-2cos2x]
=41[1+(21−cos4x)-2cos2x]
=41[1+41+41cos4x-2cos2x]
=41[23+41cos4x-2cos2x]
∴ ∫sin4 x dx=41 ∫23+21cos4x-2cos2x]dx
=41[23x+21(4sin4x)-2sin2x/2]+C
=81[3x+4sin4x-2sin2x]+C
=83x-41sin2x+321sin4x+C