Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sin4xsin^4 x

Answer

sin4 x = sin2 x sin2 x

=(1cos2x2\frac{1-cos2x}{2})(1cos2x2\frac{1-cos2x}{2})

=14\frac 14(1-cos2x)2

=14\frac 14[1+cos22x-2cos2x]

=14\frac 14[1+(1cos4x2\frac{1-cos4x}{2})-2cos2x]

=14\frac 14[1+14\frac 14+14\frac 14cos4x-2cos2x]

=14\frac 14[32\frac 32+14\frac 14cos4x-2cos2x]

∴ ∫sin4 x dx=14\frac 1432\frac 32+12\frac 12cos4x-2cos2x]dx

=14\frac 14[32\frac 32x+12\frac 12(sin4x4\frac{sin4x}{4})-2sin2x/2]+C

=18\frac 18[3x+sin4x4\frac{sin4x}{4}-2sin2x]+C

=3x8\frac{3x}{8}-14\frac 14sin2x+132\frac {1}{32}sin4x+C