Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sin3xcos4xsin\,3x\,cos\,4x

Answer

The correct answer is: =cos7x14+cosx2+C= \frac{-cos7x}{14}+\frac{cosx}{2}+C
It is known that, sinAcosB=12[sin(A+B)+sin(AB)]sin A\, cos B = \frac{1}{2}[sin(A+B) + sin(A-B)]
sin3xcos4xdx=12sin(3x+4x)+sin(3x4x)dx∴ ∫sin\,3x\,cos\,4x\, dx = \frac{1}{2} ∫{sin(3x+4x)+sin(3x-4x)} dx
=12sin7x+sin(x)dx=\frac{1}{2} ∫{sin7x+sin(-x)} dx
=12sin7xdx12sinxdx=\frac{1}{2} ∫sin7x dx-\frac{1}{2} ∫sinx dx
=12(cos7x7)12(cosx)+C=\frac{1}{2}(\frac{-cos7x}{7})-\frac{1}{2}(-cosx)+C
=cos7x14+cosx2+C= \frac{-cos7x}{14}+\frac{cosx}{2}+C