Question
Mathematics Question on integral
Find the integrals of the function: sin3xcos4x
Answer
The correct answer is: =14−cos7x+2cosx+C
It is known that, sinAcosB=21[sin(A+B)+sin(A−B)]
∴∫sin3xcos4xdx=21∫sin(3x+4x)+sin(3x−4x)dx
=21∫sin7x+sin(−x)dx
=21∫sin7xdx−21∫sinxdx
=21(7−cos7x)−21(−cosx)+C
=14−cos7x+2cosx+C