Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sin3xcos3xsin^3 x\, cos^3 x

Answer

The correct answer is: =cos6x6cos4x4+C= \frac{cos^6x}{6}-\frac{cos^4x}{4}+C
Let I=sin3xcos3x.dxI = ∫sin^3 x\, cos^3 x.dx
=cos3x.sin2x.sinx.dx= ∫cos^3 x. sin^2 x. sin x. dx
=cos3x(1cos2x)sinx.dx= ∫cos^3 x(1-cos^2 x)sin x.dx
Let cosx=1cos x = 1
sinx.dx=dt⇒ -sin x.dx = dt
I=t3(1t2)dt⇒ I = - ∫t^3(1-t^2)dt
=(t3t5)dt= -∫(t^3-t^5)dt
=[t44t66]+C= -[{\frac{t^4}{4}-\frac{t^6}{6}}]+C
=[cos4x4cos6x6]+C= - [{\frac{cos^4x}{4}-\frac{cos^6x}{6}}]+C
=cos6x6cos4x4+C= \frac{cos^6x}{6}-\frac{cos^4x}{4}+C