Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sin3(2x+1)sin^3 (2x+1)

Answer

The correct answer is: =cos(2x+1)2+cos3(2x+1)6+C=\frac{-cos(2x+1)}{2}+\frac{cos^3(2x+1)}{6}+C
Let I=sin3(2x+1)I = ∫sin^3(2x+1)
sin3(2x+1)dx=sin2(2x+1).sin(2x+1)dx⇒ ∫sin^3(2x+1)dx = ∫sin^2(2x+1).sin(2x+1)dx
=(1cos2(2x+1)sin(2x+1)dx= ∫(1-cos^2(2x+1)sin(2x+1)dx
Let cos(2x+1)=tcos(2x+1)=t
2sin(2x+1)dx=dt⇒ -2sin(2x+1)dx = dt
sin(2x+1)dx=dt2⇒ sin(2x+1)dx = \frac{-dt}{2}
I=12(1t2)dt⇒ I = \frac{-1}{2} ∫(1-t^2)dt
=12[tt33]=-\frac{1}{2}[t-\frac{t^3}{3}]
=12cos(2x+1)cos3(2x+1)3=\frac{-1}{2}{cos(2x+1)-\frac{cos^3(2x+1)}{3}}
=cos(2x+1)2+cos3(2x+1)6+C=\frac{-cos(2x+1)}{2}+\frac{cos^3(2x+1)}{6}+C