Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sin2(2x+5)sin^2 (2x + 5)

Answer

The correct answer is: 12x18sin(4x+10)+C\frac{1}{2}x-\frac{1}{8}sin(4x+10)+C
sin2(2x+5)=1cos2(2x+5)2=1cos(4x+10)2sin^2 (2x + 5) = \frac{1-cos\,2(2x + 5)}{2} = \frac{1-cos(4x + 10)}{2}
sin2(2x+5)dx=1cos(4x+10)2dx⇒ \int sin^2(2x + 5)dx = \int \frac{1-cos(4x+10)}{2} dx
=121dx12cos(4x+10)dx=\frac{1}{2} ∫1 dx-\frac{1}{2} ∫cos(4x + 10)dx
=12x12(sin(4x+10)4)+C= \frac{1}{2}x-\frac{1}{2}(\frac{sin(4x + 10)}{4})+C
=12x18sin(4x+10)+C=\frac{1}{2}x-\frac{1}{8}sin(4x+10)+C