Question
Mathematics Question on integral
Find the integrals of the function: sin−1(cosx)
Answer
sin-1 (cos x)
Let cos x = t
Then, sin x = 1−t2
⇒ (-sin x)dx = dt
dx = -sin xdt
dx = -1−t2dt
∴ ∫sin-1(cos x)dx = ∫sin-1t(−1−t2dt)
= - ∫1−t2sin−1tdt
Let sin-1t = u
⇒ (1−t21) = du
∴ ∫sin-1(cos x)dx = ∫4du
= - 2u2+ C
= -2(sin−1t)2 + C
= -[2(sin−1(cos x)2] + C …....(1)
It is known that,
sin-1 x + cos-1 x = 2π
∴ sin-1(cos x)= 2π - cos-1(cos x) = (2π−x)
Substituting in equation (1), we obtain
∫sin-1(cos x)dx = -2[2π−x]2 + C
= -21(2π2+x2−πx)+C
= -8π2−2x2+21πx+C
= 2πx−2x2+(C−8π2)
= 2πx−2x2+C1