Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sin1(cosx)sin^{-1} (cos x)

Answer

sin-1 (cos x)
Let cos x = t
Then, sin x = 1t2\sqrt {1-t^2}
⇒ (-sin x)dx = dt
dx = -dtsin x\frac {dt}{sin\ x}
dx = -dt1t2\frac {dt}{\sqrt {1-t^2}}
∴ ∫sin-1(cos x)dx = ∫sin-1t(dt1t2)(-\frac {dt}{\sqrt {1-t^2}})
= - ∫sin1t1t2dt\frac {sin^{-1}t}{\sqrt{1-t^2 }}dt
Let sin-1t = u
(11t2)(\frac {1}{\sqrt {1-t^2}}) = du
∴ ∫sin-1(cos x)dx = ∫4du
= - u22\frac {u^2}{2}+ C
= -(sin1t)22\frac {(sin^{-1}t)^2}{2} + C
= -[(sin1(cos x)22][\frac {(sin^{-1}(cos\ x)^2}{2}] + C …....(1)
It is known that,
sin-1 x + cos-1 x = π2\frac \pi2
∴ sin-1(cos x)= π2\frac \pi2 - cos-1(cos x) = (π2x)(\frac \pi2-x)
Substituting in equation (1), we obtain
∫sin-1(cos x)dx = -[π2x]22\frac {[\frac \pi2-x]^2}{2} + C
= -12(π22+x2πx)+C\frac 12(\frac {\pi^2}{2}+x^2-\pi x)+C
= -π28x22+12πx+C\frac {\pi^2}{8}-\frac {x^2}{2}+\frac 12πx+C
= πx2x22+(Cπ28)\frac {\pi x}{2}-\frac {x^2}{2} +(C-\frac {\pi^2}{8})
= πx2x22+C1\frac {\pi x}{2}-\frac {x^2}{2} +C_1