Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sin2x1+cosx\frac{sin2 x}{1+cos x}

Answer

sin2x1+cosx\frac{sin2 x}{1+cos x} =(2sin(x2)cosx2)22cos2(x2)= \frac{(2sin (\frac{x}{2}) cos \frac{x}{2})^2 }{2cos^2 (\frac{x}{2})} [sinx=2sin(x2)cos(x2);cosx=2cos2(x2)1] [sin x = 2sin (\frac{x}{2}) cos (\frac{x}{2}) ; cos x = 2cos^2 (\frac{x}{2}) -1]

=4sin2x2cos2(x2)2cos2x2= \frac{4sin^2 \frac{x}{2} cos^2 (\frac{x}{2}) }{ 2cos^2\frac{x}{2}}

=2sin2(x2)= 2sin^2 (\frac{x}{2})
= 1-cos x

∴ ∫sin2x1+cosx\frac{sin2 x}{1+cos x} dx = ∫(1-cos x)dx

= x - sin x+C