Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: sin3x+cos3xsin2x.cos2x\frac {sin^3 x+cos^3 x}{sin^2 x .cos^2 x}

Answer

sin3x+cos3xsin2x.cos2x\frac {sin^3 x+cos^3 x}{sin^2 x .cos^2 x}

= sin3xsin2x.cos2x\frac {sin^3 x}{sin^2 x .cos^2 x} + cos3xsin2x.cos2x\frac {cos^3 x}{sin^2 x .cos^2 x}

= sin xcos2x\frac {sin \ x}{cos^2 x }+ cos xsin2x\frac {cos\ x}{sin^2 x }

= tan x.sec x+cot x.cosec xtan \ x .sec\ x + cot \ x. cosec\ x

sin3x+cos3xsin2x.cos2xdx\int\frac {sin^3 x+cos^3 x}{sin^2 x .cos^2 x}dx = (tan x.sec x+cot x.cosec x)dx\int (tan \ x .sec\ x + cot \ x. cosec\ x)dx
= sec xcosec x+Csec\ x-cosec\ x +C