Question
Mathematics Question on integral
Find the integrals of the function: cosx−cosαcos2x−cos2α
Answer
\frac{cos2 x-cos2 α}{cos x - cos α}$$=\frac{ -2 sin (\frac{2x+2α}{2}) sin (\frac{2x-2α}{2}) }{-2sin (\frac{x+α}{2}) sin (\frac{x- α}{2}) } [cos C - cos D = -2sin 2C+D sin 2C−D]
=sin(2x+α)sin(2x−α)sin(x+α)sin(x−α)
=sin(2x+α))sin(2x−α))[2sin(2x+α))cos(2x+α))][2sin(2x−α))cos(2x−α))]
=4cos(2x+α)cos(2x−α)
=2[cos(2x+α+2x−α)+cos2x+α\-2x−α]
=2[cos(x)+cosα]
=2cosx+2cosα
∴ ∫cosx−cosαcos2x−cos2α = ∫2cosx+2cosα
=2[sinx+xcosα]+C