Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: cosxsinx1+sin2x\frac{cos x - sin x}{1+sin 2x}

Answer

cosxsinx1+sin2x\frac{cos x - sin x}{1+sin 2x} =cosxsinx(sin2x+cos2x)+2sinxcosx= \frac{cos x -sin x}{(sin^2 x + cos^2 x)+2sin x cos x } [sin2 x+cos2 x =1; sin 2x=2sin x cos x]

=cosxsinx(sinx+cosx)2=\frac{cos x-sin x}{(sin x+cos x)^2}

Let sinx+cosx=tsin x +cos x = t

(cosxsinx)dx=dt∴ (cos x-sin x)dx = dt

⇒ ∫cosxsinx1+sin2x\frac{cos x - sin x}{1+sin 2x} = ∫cosxsinx(sinx+cosx)2\frac {cos x-sin x}{(sin x + cos x)^2} dx

=dtt2= ∫\frac{dt}{t^2}

=t2dt= ∫t^2dt

=t2+C=-t^2+C

=1t+C=-\frac{1}{t}+C

=1sinx+cosx+C=\frac{-1}{sin x +cos x} +C