Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: cosx1+cosx\frac{cos x}{1+cos x}

Answer

cosx1+cosx\frac{cos x}{1+cos x} = cos2(x2)sin2(x2)2cos2(x2)\frac{cos^2 (\frac{x}{2}) -sin^2 (\frac{x}{2}) }{2cos^2 (\frac{x}{2}) } [cos x= cos2 x2\frac{x}{2}-sin2 x2\frac{x}{2} and cos x = 2cos2 x2\frac{x}{2}-1]
=12\frac{1}{2}[1-tan2 x2\frac{x}{2}]
∴ ∫cosx1+cosxdx\frac{cos x}{1+cos x}dx = 12\frac{1}{2}∫(1-tan2x2\frac{x}{2})dx
= 12\frac{1}{2} ∫(1-sec2 x2\frac{x}{2}+1)dx
= 12\frac{1}{2}∫(2-sec2 x2\frac{x}{2})dx
= 12\frac{1}{2}[2xtan(x2)(12)2x-\frac{tan(\frac{x}{2})}{(\frac{1}{2})}]+C
=x -tanx2\frac{x}{2}+C