Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: cos 2x(cos x+sin x)2\frac {cos\ 2x}{(cos \ x+sin \ x)^2}

Answer

cos 2x(cos x+sin x)2\frac {cos\ 2x}{(cos \ x+sin \ x)^2} = cos 2xcos2x+sin2x+2sin x.cos x\frac {cos\ 2x}{cos^2 x +sin^2 x+ 2sin \ x.cos\ x} = cos 2x1+sin 2x\frac {cos\ 2x}{1+sin \ 2x}

∫$$\frac {cos\ 2x}{(cos \ x+sin \ x)^2} dx = ∫$$\frac {cos\ 2x}{1+sin \ 2x}dx

Let 1+sin 2x = t

⇒ 2cos 2x dx = dt

∫$$\frac {cos\ 2x}{(cos \ x+sin \ x)^2} dx =121tdt\frac 12 ∫\frac 1tdt

=12\frac 12 log|t| + C

= 12\frac 12log |1+sin 2x| + C

= 12\frac 12log |(sin x + cos x)2| + C

= log |sin x + cos x| + C