Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: 1sin x cos3x\frac {1}{sin \ x\ cos^3 x}

Answer

1sin x cos3x\frac {1}{sin \ x\ cos^3 x}

= sin2x+cos2xsin x cos3x\frac {sin^2x+cos^2x}{sin \ x\ cos^3 x}

= sin xcos3x\frac {sin\ x}{cos^3 x} + 1sin x.cos x\frac {1}{sin \ x .\cos \ x}

= tan x sec2x + 1/cos2xsinx.cosx/cos2x\frac {1/cos^2 x}{sin x .cos x/cos^2 x}

= tan x sec2x + sec2xtan x\frac {sec^2 x}{tan \ x}

1sin x cos3xdx\int\frac {1}{sin \ x\ cos^3 x}dx = tan x.sec2x dx∫tan \ x .sec^2 x \ dx+ sec2xtan xdx∫\frac {sec^2 x}{tan \ x} dx

Let tan x = t ⇒ sec2x dx = dt
1sin x cos3xdx\int\frac {1}{sin \ x\ cos^3 x}dx = tdt∫tdt + 1tdt∫\frac 1t dt

= t22\frac {t^2}{2 }+ logt+C log|t| +C

=12tan2x+logtanx+C\frac 12 tan^2 x +log|tan x|+C