Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: 1cos(xa)cos(xb)\frac{1}{cos(x-a)cos(x-b)}

Answer

The correct answer is: =1sin(ab)[logcos(xa)cos(xb)]+C=\frac{1}{sin(a-b)}[log|\frac{cos(x-a)}{cos(x-b)}|]+C
1cos(xa)cos(xb)=1sin(ab)[sin(ab)cos(xa)cos(xb)]\frac{1}{cos(x-a)cos(x-b)} = \frac{1}{sin(a-b)}[\frac{sin(a-b)}{cos(x-a)cos(x-b)}]
=1sin(ab)[sin[(xb)(xa)]cos(xa)cos(xb)]=\frac{1}{sin(a-b)}[\frac{sin[(x-b)-(x-a)]}{cos(x-a)cos(x-b)}]
=1sin(ab)[sin(xb)cos(xa)cos(xb)sin(xa)]cos(xa)cos(xb)=\frac{1}{sin(a-b)}\frac{[sin(x-b)cos(x-a)-cos(x-b)sin(x-a)]}{cos(x-a)cos(x-b)}
=1sin(ab)[tan(xb)tan(xa)]=\frac{1}{sin(a-b)}[tan(x-b)-tan(x-a)]
1cos(xa)cos(xb)dx=1sin(ab)[tan(xb)tan(xa)]dx⇒ ∫\frac{1}{cos(x-a)cos(x-b)}dx = \frac{1}{sin(a-b)} ∫[tan(x-b)-tan(x-a)]dx
=1sin(ab)[logcos(xb)+logcos(xa)]=\frac{1}{sin(a-b)}[-log|cos(x-b)|+log|cos(x-a)|]
=1sin(ab)[logcos(xa)cos(xb)]+C=\frac{1}{sin(a-b)}[log|\frac{cos(x-a)}{cos(x-b)}|]+C