Question
Mathematics Question on integral
Find the integrals of the function: cos(x−a)cos(x−b)1
Answer
The correct answer is: =sin(a−b)1[log∣cos(x−b)cos(x−a)∣]+C
cos(x−a)cos(x−b)1=sin(a−b)1[cos(x−a)cos(x−b)sin(a−b)]
=sin(a−b)1[cos(x−a)cos(x−b)sin[(x−b)−(x−a)]]
=sin(a−b)1cos(x−a)cos(x−b)[sin(x−b)cos(x−a)−cos(x−b)sin(x−a)]
=sin(a−b)1[tan(x−b)−tan(x−a)]
⇒∫cos(x−a)cos(x−b)1dx=sin(a−b)1∫[tan(x−b)−tan(x−a)]dx
=sin(a−b)1[−log∣cos(x−b)∣+log∣cos(x−a)∣]
=sin(a−b)1[log∣cos(x−b)cos(x−a)∣]+C