Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: cos42xcos^4 2x

Answer

cos4 2x = (cos2 2x)2

=(1+cos4x2)2=(\frac{1+cos4x}{2})^2

=14\frac14[1+cos2 4x+2cos 4x]

=(14)[1+(1+cos8x2)+2cos4x]= (\frac{1}{4}) [1+(\frac{1+cos8x}{2})+2cos4x]

=(14)[1+12+cos8x2+2cos4x]= (\frac{1}{4}) [1+\frac{1}{2}+\frac{cos8x}{2}+2cos4x]

=(14)[32+cos8x2+2cos4x]= (\frac{1}{4}) [ \frac{3}{2}+\frac{cos8x}{2}+2cos4x]

∴ ∫cos4 2x dx = ∫(38+cos8x8+cos4x2)dx(\frac{3}{8}+\frac{cos8x}{8}+\frac{cos4x}{2})dx

=38x+sin8x64+sin4x8+C=\frac{3}{8}x+\frac{sin8x}{64}+\frac{sin4x}{8}+C