Solveeit Logo

Question

Mathematics Question on integral

Find the integrals of the function: cos2xcos4xcos6xcos\, 2x\, cos\, 4x\, cos\, 6x

Answer

The correct answer is: =14[sin12x12+sin8x8+x+sin4x4]+C=\frac{1}{4}[\frac{sin12x}{12}+\frac{sin8x}{8}+x+\frac{sin4x}{4}]+C
It is known that, cosAcosB=12[cos(A+B)+cos(AB)]cosA\,cosB = \frac{1}{2}[cos(A+B)+cos(A-B)]
cos2x(cos4xcos6x)dx=cos2x[12cos(4x+6x)+cos(4x6x)]dx∴ ∫cos2x(cos4x\,cos6x)dx = ∫cos2x[\frac{1}{2}{cos(4x+6x)+cos(4x-6x)}]dx
=12cos2xcos10x+cos2xcos(2x)dx=\frac{1}{2} ∫ {cos2x\,cos10x+cos2x\,cos(-2x)}dx
=12[cos2xcos10x+cos22x]dx=\frac{1}{2} ∫[cos2x\,cos10x+cos^2 2x]dx
=12[12cos(2x+10x)+cos(2x10x)+(1+cos4x2)]dx=\frac{1}{2} ∫[{\frac{1}{2}cos(2x+10x)+cos(2x-10x)}+(\frac{1+cos4x}{2})]dx
=14(cos12x+cos8x+1+cos4x)dx=\frac{1}{4} ∫(cos12x+cos8x+1+cos4x)dx
=14[sin12x12+sin8x8+x+sin4x4]+C=\frac{1}{4}[\frac{sin12x}{12}+\frac{sin8x}{8}+x+\frac{sin4x}{4}]+C