Question
Mathematics Question on integral
Find the integrals of the function: cos2xcos4xcos6x
Answer
The correct answer is: =41[12sin12x+8sin8x+x+4sin4x]+C
It is known that, cosAcosB=21[cos(A+B)+cos(A−B)]
∴∫cos2x(cos4xcos6x)dx=∫cos2x[21cos(4x+6x)+cos(4x−6x)]dx
=21∫cos2xcos10x+cos2xcos(−2x)dx
=21∫[cos2xcos10x+cos22x]dx
=21∫[21cos(2x+10x)+cos(2x−10x)+(21+cos4x)]dx
=41∫(cos12x+cos8x+1+cos4x)dx
=41[12sin12x+8sin8x+x+4sin4x]+C