Solveeit Logo

Question

Question: Find the integral values of k for which the system of equations; \(\begin{aligned} & arc(\cos ...

Find the integral values of k for which the system of equations;
arc(cosx)+(arcsiny)2=kπ24 (arcsiny)2.arc(cosx)=π416 \begin{aligned} & arc(\cos x)+{{(arc\,\,\sin y)}^{2}}=\dfrac{k{{\pi }^{2}}}{4} \\\ & {{(arc\,\,\sin y)}^{2}}.\,arc(\cos x)=\dfrac{{{\pi }^{4}}}{16} \\\ \end{aligned}
Possess the solution and also find the solutions.

Explanation

Solution

We can assume arc(cosx)arc(\cos x) and arc(siny)arc(\sin y) as m and n. We rearrange the given equation in the form of m and n. Then we get two quadratic equations in the form of m and n. We solve those equations to get the values of m and n. Now, solve the equations arc(cosx)=marc(\cos x)=m and arc(siny)=narc(\sin y)=n to get the values of xx and yy.

Complete step-by-step answer :
Here, arc(cosx)=cos1xarc(\cos x)={{\cos }^{-1}}x and arc(siny)=sin1yarc(\sin y)={{\sin }^{-1}}y.
We assume arc(cosx)arc(\cos x) and arc(siny)arc(\sin y) as m and n.
So, arc(cosx)=marc(\cos x)=m and arc(siny)=narc(\sin y)=n.
It implies cosm=x\cos m=x and sinn=y\sin n=y.
We can easily change the ordered pair (m,n)(m,n) to (x,y)(x,y).
Now, the given equations become
m+(n)2=kπ24 (n)2.m=π416 \begin{aligned} & m+{{(n)}^{2}}=\dfrac{k{{\pi }^{2}}}{4} \\\ & {{(n)}^{2}}.\,m=\dfrac{{{\pi }^{4}}}{16} \\\ \end{aligned}
Now, we solve them to get the values of m and n.
m+(n)2=kπ24 n2=kπ24m \begin{aligned} & m+{{(n)}^{2}}=\dfrac{k{{\pi }^{2}}}{4} \\\ & \Rightarrow {{n}^{2}}=\dfrac{k{{\pi }^{2}}}{4}-m \\\ \end{aligned}
We place the value of n2{{n}^{2}} in the second equation.
(n)2.m=π416 (kπ24m).m=π416 4mkπ216m2=π4 16m24mkπ2+π4=0 \begin{aligned} & {{(n)}^{2}}.\,m=\dfrac{{{\pi }^{4}}}{16} \\\ & \Rightarrow (\dfrac{k{{\pi }^{2}}}{4}-m).\,m=\dfrac{{{\pi }^{4}}}{16} \\\ & \Rightarrow 4mk{{\pi }^{2}}-16{{m}^{2}}={{\pi }^{4}} \\\ & \Rightarrow 16{{m}^{2}}-4mk{{\pi }^{2}}+{{\pi }^{4}}=0 \\\ \end{aligned}
The equation becomes a quadratic equation of m.
The discriminant of the equation will be non-negative. D0\Rightarrow D\ge 0.
So, for the inequation 16m24mkπ2+π4=016{{m}^{2}}-4mk{{\pi }^{2}}+{{\pi }^{4}}=0
(4kπ2)24×16×π40 π4(k24)0 \begin{aligned} & {{\left( -4k{{\pi }^{2}} \right)}^{2}}-4\times 16\times {{\pi }^{4}}\ge 0 \\\ & \Rightarrow {{\pi }^{4}}({{k}^{2}}-4)\ge 0 \\\ \end{aligned}
From the inequation we try to find the values of k.
π4(k24)0 (k24)0 k24 \begin{aligned} & {{\pi }^{4}}({{k}^{2}}-4)\ge 0 \\\ & \Rightarrow ({{k}^{2}}-4)\ge 0 \\\ & \Rightarrow {{k}^{2}}\ge 4 \\\ \end{aligned}
Solution of the inequation will be k2k\le -2 or k2k\ge 2.
Now, we take one given equation with the unknown k.
arc(cosx)+(arcsiny)2=kπ24arc(\cos x)+{{(arc\,\,\sin y)}^{2}}=\dfrac{k{{\pi }^{2}}}{4}
Here, the principal solution of arc(cosx)arc(\cos x) lies in [0,π]\left[ 0,\pi \right] and arc(siny)arc(\sin y) lies in [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right].
So, arc(cosx)+(arcsiny)2arc(\cos x)+{{(arc\,\,\sin y)}^{2}} will always be a positive value which means kπ24\dfrac{k{{\pi }^{2}}}{4}will be a positive value.
It means k can only take positive values.
So, our solutions k2k\le -2 or k2k\ge 2 will automatically omit the negative value, means the only solutions will be k2k\ge 2.
Now, we try to find the maximum value of arc(cosx)+(arcsiny)2=kπ24arc(\cos x)+{{(arc\,\,\sin y)}^{2}}=\dfrac{k{{\pi }^{2}}}{4}.
We know that for arc(cosx)arc(\cos x) and arc(siny)arc(\sin y) the maximum values are 2π2\pi and π2\dfrac{\pi }{2}.
So, putting maximum values of arc(cosx)+(arcsiny)2arc(\cos x)+{{(arc\,\,\sin y)}^{2}}
arc(cosx)+(arcsiny)2=kπ24 2π+(π2)2=kπ24 kπ24π24=2π \begin{aligned} & arc(\cos x)+{{(arc\,\,\sin y)}^{2}}=\dfrac{k{{\pi }^{2}}}{4} \\\ & \Rightarrow 2\pi +{{(\dfrac{\pi }{2})}^{2}}=\dfrac{k{{\pi }^{2}}}{4} \\\ & \Rightarrow \dfrac{k{{\pi }^{2}}}{4}-\dfrac{{{\pi }^{2}}}{4}=2\pi \\\ \end{aligned}
Now, we solve for k.

& \dfrac{k{{\pi }^{2}}}{4}-\dfrac{{{\pi }^{2}}}{4}=2\pi \\\ & \Rightarrow \dfrac{(k-1){{\pi }^{2}}}{4}=2\pi \\\ & \Rightarrow (k-1)\pi =8 \\\ & \Rightarrow (k-1)=\dfrac{8}{\pi } \\\ & \Rightarrow k=\dfrac{8}{\pi }+1 \\\ \end{aligned}$$ k only takes integral values where $$k=\dfrac{8}{\pi }+1=3.54(approx.)$$ For integral value solutions we get $k=2,3[\because k\ge 2]$ Now, we put the values of k one by one. For $k=2$ the given equation becomes $\begin{aligned} & m+{{(n)}^{2}}=\dfrac{{{\pi }^{2}}}{2} \\\ & {{(n)}^{2}}.\,m=\dfrac{{{\pi }^{4}}}{16} \\\ \end{aligned}$ We solve the equations by replacing the value ${{(n)}^{2}}$ of we get $\begin{aligned} & m+{{(n)}^{2}}=\dfrac{{{\pi }^{2}}}{2} \\\ & \Rightarrow m+\dfrac{{{\pi }^{4}}}{16m}=\dfrac{{{\pi }^{2}}}{2}[\because {{(n)}^{2}}=\dfrac{{{\pi }^{4}}}{16m}] \\\ \end{aligned}$ We solve it by turning into a square form $\begin{aligned} & m+\dfrac{{{\pi }^{4}}}{16m}=\dfrac{{{\pi }^{2}}}{2} \\\ & \Rightarrow 16{{m}^{2}}-8m{{\pi }^{2}}+{{\pi }^{4}}=0 \\\ & \Rightarrow {{\left( 4m-{{\pi }^{2}} \right)}^{2}}=0 \\\ \end{aligned}$ We get the value of m as $$\begin{aligned} & 4m={{\pi }^{2}} \\\ & \Rightarrow m=\dfrac{{{\pi }^{2}}}{4} \\\ \end{aligned}$$ So, now putting value of m we get value of n. $\begin{aligned} & {{(n)}^{2}}.\,m=\dfrac{{{\pi }^{4}}}{16} \\\ & \Rightarrow {{(n)}^{2}}.\,\left( \dfrac{{{\pi }^{2}}}{4} \right)=\dfrac{{{\pi }^{4}}}{16} \\\ & \Rightarrow n=\pm \dfrac{\pi }{2} \\\ \end{aligned}$ So, the final solutions be for $k=2$ the ordered pair be $\left( \dfrac{{{\pi }^{2}}}{4},\pm \dfrac{\pi }{2} \right)$. For changing from $\left( m,n \right)$ we get $\left( x,y \right)$. For $k=2$ the ordered pair be $\left( \cos \left( \dfrac{{{\pi }^{2}}}{4} \right),\sin \left( \pm \dfrac{\pi }{2} \right) \right)=\left( \cos \left( \dfrac{{{\pi }^{2}}}{4} \right),\pm 1 \right)$. For $k=3$ the given equation becomes $\begin{aligned} & m+{{(n)}^{2}}=\dfrac{3{{\pi }^{2}}}{4} \\\ & {{(n)}^{2}}.\,m=\dfrac{{{\pi }^{4}}}{16} \\\ \end{aligned}$ So, solving the equations by replacing the value ${{(n)}^{2}}$ of we get $\begin{aligned} & m+{{(n)}^{2}}=\dfrac{3{{\pi }^{2}}}{4} \\\ & \Rightarrow m+\dfrac{{{\pi }^{4}}}{16m}=\dfrac{3{{\pi }^{2}}}{4}[\because {{(n)}^{2}}=\dfrac{{{\pi }^{4}}}{16m}] \\\ \end{aligned}$ We solve it by quadratic solving method. $\begin{aligned} & m+\dfrac{{{\pi }^{4}}}{16m}=\dfrac{3{{\pi }^{2}}}{4} \\\ & \Rightarrow 16{{m}^{2}}-12m{{\pi }^{2}}+{{\pi }^{4}}=0 \\\ \end{aligned}$ We get the value of m as $$\begin{aligned} & 16{{m}^{2}}-12m{{\pi }^{2}}+{{\pi }^{4}}=0 \\\ & \Rightarrow m=\dfrac{12{{\pi }^{2}}\pm \sqrt{144{{\pi }^{4}}-64{{\pi }^{4}}}}{32} \\\ & \Rightarrow m=\dfrac{3{{\pi }^{2}}\pm {{\pi }^{2}}\sqrt{9-4}}{8} \\\ & \Rightarrow m=\dfrac{{{\pi }^{2}}(3\pm \sqrt{5})}{8} \\\ \end{aligned}$$ So, now putting value of m we get value of n. $$\begin{aligned} & {{(n)}^{2}}.\,m=\dfrac{{{\pi }^{4}}}{16} \\\ & \Rightarrow {{(n)}^{2}}.\,\left( \dfrac{{{\pi }^{2}}(3\pm \sqrt{5})}{8} \right)=\dfrac{{{\pi }^{4}}}{16} \\\ & \Rightarrow {{(n)}^{2}}=\dfrac{{{\pi }^{2}}}{2(3\pm \sqrt{5})} \\\ & \Rightarrow {{(n)}^{2}}=\dfrac{\pi }{6\pm 2\sqrt{5}}={{\left[ \dfrac{\pi }{(\sqrt{5}+1)} \right]}^{2}} \\\ & \Rightarrow n=\pm \dfrac{\pi }{(\sqrt{5}+1)} \\\ \end{aligned}$$ So, the final solutions be for $k=3$ the ordered pair be $\left( \dfrac{{{\pi }^{2}}(3\pm \sqrt{5})}{8},\pm \dfrac{\pi }{(\sqrt{5}+1)} \right)$. For changing from $\left( m,n \right)$ we get $\left( x,y \right)$. For $k=3$ the ordered pair be $\left( \cos \dfrac{{{\pi }^{2}}(3\pm \sqrt{5})}{8},\sin \left( \pm \dfrac{\pi }{(\sqrt{5}+1)} \right) \right)$. In this way we get two solutions in total. For $k=2$ the ordered pair be $\left( \cos \left( \dfrac{{{\pi }^{2}}}{4} \right),\pm 1 \right)$. For $k=3$ the ordered pair be $\left( \cos \dfrac{{{\pi }^{2}}(3\pm \sqrt{5})}{8},\sin \left( \pm \dfrac{\pi }{(\sqrt{5}+1)} \right) \right)$. **Note** : At the time of solving the solution we can take $arc(\cos x)$ and $arc(\sin y)$ as their inverse form, but that only will make the solution more tough to understand. So, the main focus should be to minimize the big equations into smaller ones. Also, getting one solution for the equation also solves the problem.