Solveeit Logo

Question

Question: Find the integral value of x, if \(\left| \begin{matrix} {{x}^{2}} & x & 1 \\\ 0 & 2 & 1 \...

Find the integral value of x, if x2x1 021 314 =28\left| \begin{matrix} {{x}^{2}} & x & 1 \\\ 0 & 2 & 1 \\\ 3 & 1 & 4 \\\ \end{matrix} \right|=28

Explanation

Solution

Hint: Any determinant of 3×33\times 3 order x1y1z1 x2y2z2 x3y3z3 \left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\\ {{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\\ {{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\\ \end{matrix} \right| is given along column 1 as
x1(y2z3z3y2)x2(y1z3y3z1)+x3(y1z2y2z1){{x}_{1}}\left( {{y}_{2}}{{z}_{3}}-{{z}_{3}}{{y}_{2}} \right)-{{x}_{2}}\left( {{y}_{1}}{{z}_{3}}-{{y}_{3}}{{z}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}{{z}_{2}}-{{y}_{2}}{{z}_{1}} \right)

Complete step-by-step answer:
Use the above rule for expansion of the given determinant and use the quadratic formula to get roots of the formed quadratic equation.
Given expression in the problem is
x2x1 021 314 =28.............................(i)\left| \begin{matrix} {{x}^{2}} & x & 1 \\\ 0 & 2 & 1 \\\ 3 & 1 & 4 \\\ \end{matrix} \right|=28.............................\left( i \right)
As we know the expansion of any determinant x1y1z1 x2y2z2 x3y3z3 \left| \begin{matrix} {{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\\ {{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\\ {{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\\ \end{matrix} \right| is given along column 1 as
=x1(y2z3z3y2)x2(y1z3y3z1)+x3(y1z2y2z1)..........................(ii)={{x}_{1}}\left( {{y}_{2}}{{z}_{3}}-{{z}_{3}}{{y}_{2}} \right)-{{x}_{2}}\left( {{y}_{1}}{{z}_{3}}-{{y}_{3}}{{z}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}{{z}_{2}}-{{y}_{2}}{{z}_{1}} \right)..........................\left( ii \right)
Hence, we can calculate the expansion of the given determinant in equation (i) along column 1 as
x2(2×41×1)0(x×41×1)+3(x×12×1)=28{{x}^{2}}\left( 2\times 4-1\times 1 \right)-0\left( x\times 4-1\times 1 \right)+3\left( x\times 1-2\times 1 \right)=28
On simplifying the terms of the above equation as
x2(81)0+3(x2)=28 7x2+3x6=28 7x2+3x34=0.............................(iii) \begin{aligned} & {{x}^{2}}\left( 8-1 \right)-0+3\left( x-2 \right)=28 \\\ & 7{{x}^{2}}+3x-6=28 \\\ & 7{{x}^{2}}+3x-34=0.............................\left( iii \right) \\\ \end{aligned}
As we know the roots of the quadratic Ax2+Bx+C=0A{{x}^{2}}+Bx+C=0 is given by the quadratic formula as
x=B±B24AC2A...............................(iv)x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}...............................\left( iv \right)
Now, we can compare the quadratic 7x2+3x34=07{{x}^{2}}+3x-34=0 with the general expression of quadratic i.e. Ax2+Bx+C=0A{{x}^{2}}+Bx+C=0
So, we get
A = 7, B = 3, C = - 34
Hence, roots of the quadratic of equation (iii) are given as
x=3±(3)24×7×3414 x=3±9+95214 x=3±96114 \begin{aligned} & x=\dfrac{-3\pm \sqrt{{{\left( 3 \right)}^{2}}-4\times 7\times -34}}{14} \\\ & x=\dfrac{-3\pm \sqrt{9+952}}{14} \\\ & x=\dfrac{-3\pm \sqrt{961}}{14} \\\ \end{aligned}
We know the value of 961\sqrt{961} is given as 31. So, we get value of x as
x=3±3114x=\dfrac{-3\pm 31}{14}
So, we get the values of x by taking ‘+’ and ‘-‘ sign individually as
x=3+3114,33114 x=2814,3414 x=2,177 \begin{aligned} & x=\dfrac{-3+31}{14},\dfrac{-3-31}{14} \\\ & x=\dfrac{28}{14},\dfrac{-34}{14} \\\ & x=2,\dfrac{-17}{7} \\\ \end{aligned}
Hence, the integral value of x is given as x = 2.
So, the answer is 2.

Note: Another method to get the values of x from the quadratic 7x2+3x34=07{{x}^{2}}+3x-34=0 would be factorization method, where we have to apply mid-term splitting, so that their product is equal to the product of the first and last term of the quadratic. So, we can write
7x2+3x34=0 7x2+17x14x34=0 x(7x+17)2(7x+17)=0 (x2)(7x+17)=0 x=2,177 \begin{aligned} & 7{{x}^{2}}+3x-34=0 \\\ & 7{{x}^{2}}+17x-14x-34=0 \\\ & x\left( 7x+17 \right)-2\left( 7x+17 \right)=0 \\\ & \left( x-2 \right)\left( 7x+17 \right)=0 \\\ & x=2,\dfrac{-17}{7} \\\ \end{aligned}
So, it can be another approach. One may go wrong with the values of A, B and C while comparing the quadratic 7x2+3x34=07{{x}^{2}}+3x-34=0 with Ax2+Bx+C=0A{{x}^{2}}+Bx+C=0. So, take care with this step. Quadratic formula for Ax2+Bx+C=0A{{x}^{2}}+Bx+C=0 is given as
x=B±B24AC2Ax=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}
And get the value of ‘x’ which is an integer.