Solveeit Logo

Question

Question: Find the integral of \(x{e^{\left( {\dfrac{x}{2}} \right)}}dx\)....

Find the integral of xe(x2)dxx{e^{\left( {\dfrac{x}{2}} \right)}}dx.

Explanation

Solution

Indefinite integral simply represents the area under a given curve without any boundary conditions. So here by using this basic definition we can integrate xe(x2)dxx{e^{\left( {\dfrac{x}{2}} \right)}}dx.Also we know integration by parts: udv=uvvdu\int {udv = uv - \int {vdu} } . The above expression and equation can be used to integrate xsinx2dxx\sin {x^2}dx.

Complete step by step answer:
Given, xe(x2)dx..............................(i)x{e^{\left( {\dfrac{x}{2}} \right)}}dx..............................\left( i \right)
Also by the basic definition of indefinite integral we can write that:
Indefinite integral is given by: f(x)dx\int {f\left( x \right)dx}
Such to integrate xe(x2)dxx{e^{\left( {\dfrac{x}{2}} \right)}}dx we can write
xe(x2)dx..........................(ii)\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx} ..........................\left( {ii} \right)
Now on observing (ii) we can say that the term xe(x2)dxx{e^{\left( {\dfrac{x}{2}} \right)}}dx cannot be integrated directly such that let’s assume:
x2=t................................(iii) x=2t \dfrac{x}{2} = t................................\left( {iii} \right) \\\ \Rightarrow x = 2t \\\
Now let’s differentiate equation (ii) and find the value of dxdx such that we can substitute it in (i):
So we get:

\Rightarrow\dfrac{1}{2}dx = dt \\\ \Rightarrow dx = 2dt......................\left( {iv} \right) \\\ $$ Now let’s substitute all the above values in (i): So we can write: $$\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx} = \int {2t{e^t}2dt} \\\ \Rightarrow\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx}= \int {4t{e^t}dt} .........................\left( v \right) \\\ $$ Now to integrate (v) we can use integration by parts which is: Also we know integration by parts: $\int {udv = uv - \int {vdu} } $ Now here we need to find$u,du,v\;{\text{and}}\;dv$. We also know that $\int {{e^x}dx} = {e^x} + C$ So from (v) we can write: $u = 4t\;{\text{and}}\;dv = {e^t}dt.................\left( {vi} \right)$ So we can find $v\;{\text{and}}\;du$from the given conditions in (iii): $u = 4t\;{\text{and}}\;dv = {e^t}dt \\\ \Rightarrow du = 4...............\left( {vii} \right) \\\ \Rightarrow v = {e^t}.......................\left( {viii} \right) \\\ $ Now substituting (vi), (vii) and (viii) in the above equation we get: $$\int {udv = uv - \int {vdu} } \\\ \Rightarrow\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx = uv - \int {vdu} } \\\ \Rightarrow\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx = 4t \times {e^t} - \int {{e^t} \times 4dt} } \\\ \Rightarrow\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx = 4t{e^t} - 4{e^t}} + C \\\ \Rightarrow\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx = 4{e^t}\left( {t - 1} \right)} + C..........................\left( {ix} \right) \\\ $$ Now let’s substitute the value of $t$ back in the equation (vii) such that we can write: $$\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx = 4{e^t}\left( {t - 1} \right)} + C \\\ \Rightarrow\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx = 4{e^{\dfrac{x}{2}}}\left( {\dfrac{x}{2} - 1} \right)} + C \\\ \Rightarrow\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx = 4{e^{\dfrac{x}{2}}}\left( {\dfrac{{x - 2}}{2}} \right)} + C \\\ \therefore\int {x{e^{\left( {\dfrac{x}{2}} \right)}}dx = 2{e^{\dfrac{x}{2}}}\left( {x - 2} \right)} + C...................\left( x \right) \\\ $$ **Therefore from (x) we can write that on integrating $x{e^{\left( {\dfrac{x}{2}} \right)}}dx$ we get $$2{e^{\dfrac{x}{2}}}\left( {x - 2} \right) + C$$.** **Note:** Since the basic definition indefinite integral simply implies the area under a curve such that the value of an integral must be finite or else the integral doesn’t exist. Also if we cannot integrate an expression directly then we have to use the formula for integration by parts which is given by:$\int {udv = uv - \int {vdu} } $