Solveeit Logo

Question

Question: Find the integral of the function \( \dfrac{1-\cos x}{1+\cos x} \)...

Find the integral of the function 1cosx1+cosx\dfrac{1-\cos x}{1+\cos x}

Explanation

Solution

Hint : Remember the Trigonometric Identities ! There’s always a hint in the question if you observe it carefully.
Trigonometric identities that might be helpful are cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 , cos2θ=12sin2θ\cos 2\theta =1-2{{\sin }^{2}}\theta etc.

Complete step-by-step answer :
Trigonometric identities used are:
cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 ,
cos2θ=12sin2θ\cos 2\theta =1-2{{\sin }^{2}}\theta ,
tan2θ=sec2θ1{{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 .
We need to find 1cosx1+cosx\int{\dfrac{1-\cos x}{1+\cos x}} .
We know that cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 (trigonometric identity)
cos2θ+1=2cos2θ\cos 2\theta +1=2{{\cos }^{2}}\theta
cos2θ=cos2θ+12{{\cos }^{2}}\theta =\dfrac{\cos 2\theta +1}{2}
Replacing θ\theta with x2\dfrac{x}{2} , we get
cos2x2=cos2x2+12{{\cos }^{2}}\dfrac{x}{2}=\dfrac{\cos 2\dfrac{x}{2}+1}{2}
cos2x2=cosx+12{{\cos }^{2}}\dfrac{x}{2}=\dfrac{\cos x+1}{2}
2cos2x2=cosx+12{{\cos }^{2}}\dfrac{x}{2}=\cos x+1 --equation 1
Similarly, we know that cos2θ=12sin2θ\cos 2\theta =1-2{{\sin }^{2}}\theta (trigonometric identity)
2sin2θ=1cos2θ2{{\sin }^{2}}\theta =1-\cos 2\theta
Replacing θ\theta with x2\dfrac{x}{2} , we get
2sin2x2=1cosx2{{\sin }^{2}}\dfrac{x}{2}=1-\cos x --equation 2
Substituting equation 1 and equation 2 , we get
2sin2x22cos2x2\Rightarrow \int{\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}}}
tan2x2\Rightarrow \int{{{\tan }^{2}}\dfrac{x}{2}}
We know that tan2θ=sec2θ1{{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 (trigonometric identity)
Replacing θ\theta with x2\dfrac{x}{2} , we get
tan2x2=sec2x21\Rightarrow {{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}-1
Therefore,
(sec2x21)dx\Rightarrow \int{\left( {{\sec }^{2}}\dfrac{x}{2}-1 \right)}dx
sec2x2dx\Rightarrow \int{{{\sec }^{2}}\dfrac{x}{2}}dx dx-\int{dx} --equation 3
Let’s find sec2x2dx\int{{{\sec }^{2}}\dfrac{x}{2}}dx by substitution method:
Let x2\dfrac{x}{2} be u, then on differentiating both sides we get, 12dx=du\dfrac{1}{2}dx=du
dx=2dudx=2du
sec2x2dx=2sec2udu\Rightarrow \int{{{\sec }^{2}}\dfrac{x}{2}}dx=2\int{{{\sec }^{2}}u}du
We know that sec2xdx=tanx\int{{{\sec }^{2}}xdx=\tan x} +C (trigonometric identity)
Where C is the integral constant
Therefore, 2sec2udu2\int{{{\sec }^{2}}u}du = 2(tanu+C)2\left( \tan u+C \right)
Replacing u with x2\dfrac{x}{2} , we get
2tanx2+C\Rightarrow 2\tan \dfrac{x}{2}+C --equation 4
(2C is also a constant represented by C)
We know that, dx\int{dx} = x+C --equation 5
(C being the integral constant)
Substituting equation 4 and equation 5 in equation 3, we get
2tanx2x+C\Rightarrow 2\tan \dfrac{x}{2}-x+C
Hence, 1cosx1+cosx\int{\dfrac{1-\cos x}{1+\cos x}} = 2tanx2x+C2\tan \dfrac{x}{2}-x+C
So, the correct answer is “ 1cosx1+cosx\int{\dfrac{1-\cos x}{1+\cos x}} = 2tanx2x+C2\tan \dfrac{x}{2}-x+C ”.

Note : Keeping in mind some standard integral rules can save time and solve the question much faster. For example, in this question one need not show integration of sec2x{{\sec }^{2}}x and can directly solve the question. This will take less time to solve the question. Similarly one can remember other standard integral rules, as many as possible!