Solveeit Logo

Question

Question: Find the integral of the following expression \({{\tan }^{3}}2x\sec 2x\) with respect to x....

Find the integral of the following expression
tan32xsec2x{{\tan }^{3}}2x\sec 2x with respect to x.

Explanation

Solution

Hint: Let I =tan32xsec2xdx=\int{{{\tan }^{3}}2x\sec 2xdx}. Put 2x = t and hence prove that the given integral is equal to tan3tsect2dt\int{\dfrac{{{\tan }^{3}}t\sec t}{2}dt}. Take secttant\sec t\tan t as the second function and tan2t2\dfrac{{{\tan }^{2}}t}{2} as first function and integrate by parts. Finally, use sec2t=1+tan2t{{\sec }^{2}}t=1+{{\tan }^{2}}t and hence express the latter integral formed by integration by parts in terms of I. Hence find the value of I.

Complete step-by-step answer:
Let I=tan32xsec2xdxI=\int{{{\tan }^{3}}2x\sec 2xdx}
Put 2x = t
Differentiating both sides, we get
2dx = dt
Dividing both sides by 2, we get
dx=dt2dx=\dfrac{dt}{2}
Hence, we get
I=tan3tsectdt2=tan2t2secttantdtI=\int{{{\tan }^{3}}t\sec t\dfrac{dt}{2}}=\int{\dfrac{{{\tan }^{2}}t}{2}\sec t\tan tdt}
We know that if g(x)dx=v(x)\int{g\left( x \right)dx=v\left( x \right)} and ddxf(x)=u(x)\dfrac{d}{dx}f\left( x \right)=u\left( x \right), then f(x)g(x)dx=f(x)v(x)u(x)v(x)dx\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)v\left( x \right)-\int{u\left( x \right)v\left( x \right)dx}
This is known as integration by parts.
Hence, if we take f(t)=tan2t2f\left( t \right)=\dfrac{{{\tan }^{2}}t}{2} and g(t)=secttantg\left( t \right)=\sec t\tan t, we have v(t)=secttantdt=sectv\left( t \right)=\int{\sec t\tan tdt}=\sec t and u(t)=ddt(tan2t2)=tantsec2tu\left( t \right)=\dfrac{d}{dt}\left( \dfrac{{{\tan }^{2}}t}{2} \right)=\tan t{{\sec }^{2}}t
Hence, by integration by parts rule, we have
tan2t2secttantdt=tan2t2sectsecttantsec2tdt\int{\dfrac{{{\tan }^{2}}t}{2}\sec t\tan tdt}=\dfrac{{{\tan }^{2}}t}{2}\sec t-\int{\sec t\tan t{{\sec }^{2}}tdt}
Hence, we have
I=secttan2t2tantsec3tdtI=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\tan t{{\sec }^{3}}tdt}
We know that
sec2t=1+tan2t{{\sec }^{2}}t=1+{{\tan }^{2}}t
Hence, we have
sec3ttant=sect(1+tan2t)tant=secttant+secttan3t{{\sec }^{3}}t\tan t=\sec t\left( 1+{{\tan }^{2}}t \right)\tan t=\sec t\tan t+\sec t{{\tan }^{3}}t
Hence, we have
I=secttan2t2(secttant+secttan3t)dtI=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\left( \sec t\tan t+\sec t{{\tan }^{3}}t \right)dt}
We know that (f(x)+g(x))dx=f(x)dx+g(x)dx\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}
Hence, we have
I=secttan2t2secttantdtsecttan3tdtI=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\sec t\tan tdt}-\int{\sec t{{\tan }^{3}}tdt}
Now, we know that I=secttan3t2dtI=\int{\dfrac{\sec t{{\tan }^{3}}t}{2}dt}
Hence, we have
2I=secttan3tdt2I=\int{\sec t{{\tan }^{3}}tdt}
Hence, we have
I=secttan2t2secttantdt2II=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\sec t\tan tdt-2I}
We know that secxtanxdx=secx\int{\sec x\tan xdx}=\sec x
Hence, we have
I=secttan2t2sect2II=\dfrac{\sec t{{\tan }^{2}}t}{2}-\sec t-2I
Adding 2I on both sides, we get
3I=secttan2t2sect3I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\sec t
Dividing both sides by 3, we get
I=secttan2t6sect3+CI=\dfrac{\sec t{{\tan }^{2}}t}{6}-\dfrac{\sec t}{3}+C, where C is the constant of integration.
Reverting to the original variable, we have
I=sec2xtan22x6sec2x3+CI=\dfrac{\sec 2x{{\tan }^{2}}2x}{6}-\dfrac{\sec 2x}{3}+C

Note: Verification:
We have
ddx(sec2xtan22x6sec2x3)=16sec2xtan2x(2)tan22x+16sec2x2tan2xsec22x(2)sec2xtan2x3(2) =13sec2xtan32x+23tan2xsec32x2sec2xtan2x3 \begin{aligned} & \dfrac{d}{dx}\left( \dfrac{\sec 2x{{\tan }^{2}}2x}{6}-\dfrac{\sec 2x}{3} \right)=\dfrac{1}{6}\sec 2x\tan 2x\left( 2 \right){{\tan }^{2}}2x+\dfrac{1}{6}\sec 2x2\tan 2x{{\sec }^{2}}2x\left( 2 \right)-\dfrac{\sec 2x\tan 2x}{3}\left( 2 \right) \\\ & =\dfrac{1}{3}\sec 2x{{\tan }^{3}}2x+\dfrac{2}{3}\tan 2x{{\sec }^{3}}2x-\dfrac{2\sec 2x\tan 2x}{3} \\\ \end{aligned}
Taking sec2xtan2x common, we get
dIdx=sec2xtan2x(tan2x3+2sec2x323)\dfrac{dI}{dx}=\sec 2x\tan 2x\left( \dfrac{{{\tan }^{2}}x}{3}+\dfrac{2{{\sec }^{2}}x}{3}-\dfrac{2}{3} \right)
We know that sec2x=1+tan2x{{\sec }^{2}}x=1+{{\tan }^{2}}x
Hence, we have
dIdx=sec2xtan2x3(tan22x+2tan22x+22)\dfrac{dI}{dx}=\dfrac{\sec 2x\tan 2x}{3}\left( {{\tan }^{2}}2x+2{{\tan }^{2}}2x+2-2 \right)
Hence, we have
dIdx=sec2xtan32x\dfrac{dI}{dx}=\sec 2x{{\tan }^{3}}2x
Hence our answer is verified to be correct.