Solveeit Logo

Question

Question: Find the integral of \({\text{sinx}}{\text{.sin2x}}{\text{.sin3x}}\), denoted by \(\int {{\text{sinx...

Find the integral of sinx.sin2x.sin3x{\text{sinx}}{\text{.sin2x}}{\text{.sin3x}}, denoted by sinx sin2x sin3x dx\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}.

Explanation

Solution

Hint – To find the integral of sinx.sin2x.sin3x{\text{sinx}}{\text{.sin2x}}{\text{.sin3x}}, we simplify the term using trigonometric identities and then apply the formulas for integrals of sine and cosine functions to approach the answer.

Complete step by step answer:
Let us start off by simplifying the first two terms of the equation,
sinx sin2x sin3x dx\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}= (sinx sin2x) sin3x dx\int {{\text{(sinx sin2x) sin3x}}} {\text{ dx}}

We know that 2 SinA SinB = - cos (A + B) + cos (A – B)
⟹SinA SinB = 12\dfrac{1}{2}[-Cos(A+B) + Cos(A-B)]
⟹SinA SinB = 12\dfrac{1}{2}[Cos(A-B) – Cos(A+B)]
We compare this with Sinx Sin2x, we get A = x and B = 2x
⟹Sinx Sin2x = 12\dfrac{1}{2}[Cos(x-2x) – Cos(x+2x)]
⟹Sinx Sin2x = 12\dfrac{1}{2}[Cos(-x) – Cos3x]
We know for the trigonometric function cosine, Cos(-x) = Cos x.
So Sinx Sin2x = 12\dfrac{1}{2}[Cosx – Cos3x]
Hence our equation sinx sin2x sin3x dx\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}= 12(cosx - cos3x)sin3x dx\int {\dfrac{1}{2}\left( {{\text{cosx - cos3x}}} \right)\sin 3{\text{x dx}}}
= 12(cosx - cos3x)sin3x dx\dfrac{1}{2}\int {\left( {{\text{cosx - cos3x}}} \right)\sin 3{\text{x dx}}}
= 12(cosx sin3x - cos3x sin3x)dx\dfrac{1}{2}\int {\left( {{\text{cosx sin3x - cos3x sin3x}}} \right){\text{dx}}}
= 12[cosx sin3x dx - cos3x sin3x dx]\dfrac{1}{2}\left[ {\int {{\text{cosx sin3x dx - }}\int {{\text{cos3x sin3x}}} {\text{ dx}}} } \right] - (1)
We solve both the terms in equation (1) individually for easy simplification,
First let us solvecosx sin3x dx\int {{\text{cosx sin3x dx}}} :
We know that 2 SinA CosB = Sin(A+B) + Sin(A-B)
SinA CosB{\text{SinA CosB}} = 12[Sin(A + B) + Sin(A - B)]\dfrac{1}{2}\left[ {{\text{Sin(A + B) + Sin(A - B)}}} \right]
Comparing this to the above equation we get, A = 3x and B = x
⟹Sin3x Cosx = 12\dfrac{1}{2}[Sin(x+3x) + Sin(3x-x)]
= 12\dfrac{1}{2}[Sin4x + Sin2x]
Hence, Sin3x Cosx dx = 12[Sin4x + Sin2x] dx\int {{\text{Sin3x Cosx dx = }}\dfrac{1}{2}\int {\left[ {{\text{Sin4x + Sin2x}}} \right]} {\text{ dx}}} .

Now let us solve cos3x sin3x dx\int {{\text{cos3x sin3x}}} {\text{ dx}}
We know that 2 SinA CosB = Sin(A+B) + Sin(A-B)
SinA CosB{\text{SinA CosB}} = 12[Sin(A + B) + Sin(A - B)]\dfrac{1}{2}\left[ {{\text{Sin(A + B) + Sin(A - B)}}} \right]
Comparing this to the above equation we get, A = 3x and B = 3x
⟹Sin3x Cos3x = 12\dfrac{1}{2}[Sin(3x+3x) + Sin(3x-3x)]
= 12\dfrac{1}{2}[Sin6x + Sin0]
= 12\dfrac{1}{2}Sin6x dx
Hence, Sin3x Cos3x dx = 12[Sin6x] dx\int {{\text{Sin3x Cos3x dx = }}\dfrac{1}{2}\int {\left[ {{\text{Sin6x}}} \right]} {\text{ dx}}} .
Thus, our original equation becomes
sinx sin2x sin3x dx\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}= 12[cosx sin3x dx - cos3x sin3x dx]\dfrac{1}{2}\left[ {\int {{\text{cosx sin3x dx - }}\int {{\text{cos3x sin3x}}} {\text{ dx}}} } \right]
= 12[12(sin4x + sin2x) dx - 12(sin6x) dx]\dfrac{1}{2}\left[ {\dfrac{1}{2}\int {\left( {{\text{sin4x + sin2x}}} \right){\text{ dx - }}\dfrac{1}{2}\int {\left( {{\text{sin6x}}} \right)} {\text{ dx}}} } \right]
= 14[sin4x dx + sin2x dx - sin6x dx]\dfrac{1}{4}\left[ {\int {{\text{sin4x dx + }}\int {{\text{sin2x dx}}} {\text{ - }}\int {{\text{sin6x dx}}} } } \right]
We knowsin(ax + b) dx = - cos(ax + b)a+C\int {{\text{sin}}\left( {{\text{ax + b}}} \right)} {\text{ dx = - }}\dfrac{{{\text{cos}}\left( {{\text{ax + b}}} \right)}}{{\text{a}}} + {\text{C}}, where C is the integral constant.
Comparing this formula with the above equation we get, a=4, a=2 and a=6 for first, second and third terms respectively and b=0 for all terms.
Hence our equation becomes,
sinx sin2x sin3x dx\int {{\text{sinx sin2x sin3x}}} {\text{ dx}}= 14[cos4x4+(cos2x2)(cos6x6)]+C\dfrac{1}{4}\left[ {\dfrac{{ - {\text{cos4x}}}}{4} + \left( {\dfrac{{ - {\text{cos2x}}}}{2}} \right) - \left( {\dfrac{{ - {\text{cos6x}}}}{6}} \right)} \right] + {\text{C}}
= 14[cos6x6cos4x4cos2x2]+C\dfrac{1}{4}\left[ {\dfrac{{{\text{cos6x}}}}{6} - \dfrac{{{\text{cos4x}}}}{4} - \dfrac{{{\text{cos2x}}}}{2}} \right] + {\text{C}}
Hence the answer.

Note – In order to solve this type of questions the key is to have a very good knowledge in trigonometric identities and formulas of trigonometric functions, which include the functions sin and cos, as they play a key role in simplification. It is also very important to split the terms and solve them individually as it is easy to approach the answer that way.