Solveeit Logo

Question

Question: Find the integral of \(\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x - \cos x}}{{1 + \sin x\cos x}...

Find the integral of 0π2sinxcosx1+sinxcosx\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x - \cos x}}{{1 + \sin x\cos x}}}

Explanation

Solution

In this question we can see that we have trigonometric ratios as sine and cosine are trigonometric functions. We will use some of the basic formulas to solve this question. We will use the formula: baf(x)dx=ba(a+bx)dx\int\limits_b^a {f(x)dx = } \int\limits_b^a {(a + b - x)dx} , where a,ba,b are the limits of the integration.

Complete step by step answer:
Let us assume that
I=0π2sinxcosx1+sinxcosxdxI = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x - \cos x}}{{1 + \sin x\cos x}}} dx
We will assume this as equation (one).
Now we will use this formula i.e.
baf(x)dx=ba(a+bx)dx\int\limits_b^a {f(x)dx = } \int\limits_b^a {(a + b - x)dx} ,
By comparing this with the above question we have
a=π2,b=0a = \dfrac{\pi }{2},b = 0
So we can write x=(π2+0x)x = \left( {\dfrac{\pi }{2} + 0 - x} \right)

We will substitute this value in the question and it can be written as:
I=0π2sin(π2x)cos(π2x)1+sin(π2x)cos(π2x)dxI = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin \left( {\dfrac{\pi }{2} - x} \right) - \cos \left( {\dfrac{\pi }{2} - x} \right)}}{{1 + \sin \left( {\dfrac{\pi }{2} - x} \right)\cos \left( {\dfrac{\pi }{2} - x} \right)}}} dx
Now we know the identity that
sin(π2x)=cosx\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x
And, cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x
So by applying this in the above question we can write :
I=0π2cosxsinx1+cosxsinxdxI = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x - \sin x}}{{1 + \cos x\sin x}}} dx
This is our second equation.
We will now add both our equation, so we can write:
I+I=0π2sinxcosx1+sinxcosxdx+0π2cosxsinx1+cosxsinxdxI + I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x - \cos x}}{{1 + \sin x\cos x}}} dx + \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\cos x - \sin x}}{{1 + \cos x\sin x}}} dx

Since the denominator of both the terms in the RHS, so we will take the LCM and add them:
2I=0π2sinxcosx+cosxsinx1+cosxsinxdx2I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{\sin x - \cos x + \cos x - \sin x}}{{1 + \cos x\sin x}}} dx
On simplifying it gives us:
2I=0π201+cosxsinxdx2I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{0}{{1 + \cos x\sin x}}} dx
Now we know that any fraction in which the numerator is zero, it gives the value as zero i.e.
0a=0\dfrac{0}{a} = 0
So we can write;
2I=02I = 0
By isolating the term in LHS, we have
I=02=0I = \dfrac{0}{2} = 0

Hence the value of the above given integral in the question is 00.

Note: We should note that in the above solution we have written
sin(π2x)=cosx\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x . We can solve this with the addition formula i.e. sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A\cos B - \cos A\sin B
So by applying this we can write:
sin(π2x)=sin(π2)cosxcos(π2)sinx\sin \left( {\dfrac{\pi }{2} - x} \right) = \sin \left( {\dfrac{\pi }{2}} \right)\cos x - \cos \left( {\dfrac{\pi }{2}} \right)\sin x
Now we know that here
π2=90\dfrac{\pi }{2} = {90^ \circ } and so we have the trigonometric value i.e.
sin90=1\sin {90^ \circ } = 1
And,
cos90=0\cos {90^ \circ } = 0
So by putting this values in the formula we have:
1×cosx0=cosx1 \times \cos x - 0 = \cos x
Hence we get:
sinπ2x=cosx\sin \dfrac{\pi }{2} - x = \cos x
We can write this directly as
sin(π2x)=sin(90x)=cosx\sin \left( {\dfrac{\pi }{2} - x} \right) = \sin ({90^ \circ } - x) = \cos x
We can write directly the same for cosine too.