Solveeit Logo

Question

Question: Find the integral of \[\int {\cos x\cos 2x\cos 3xdx} \]...

Find the integral of cosxcos2xcos3xdx\int {\cos x\cos 2x\cos 3xdx}

Explanation

Solution

Hint : According to the given question, firstly we will try to make trigonometric identity by multiplying and dividing the equation with 2 so that we can use the formula of 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right) and convert it into simpler form. Then, again on multiplying and dividing the equation with 2 we can use the above identity and to make it more simpler we can also use the identity of 2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x and integrate the simplified result.
Formula used: Here we will use the trigonometric formulas of 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right) and 2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x .

Complete step-by-step answer :
As it is given that we have to evaluate cosxcos2xcos3xdx\int {\cos x\cos 2x\cos 3xdx}
Multiply and divide the equation with 2. So, we can apply the formula of 2cosAcosB2\cos A\cos B .
12(2cosxcos2x)cos3xdx\Rightarrow \dfrac{1}{2}\int {\left( {2\cos x\cos 2x} \right)\cos 3xdx}
Now using the formula of 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right) .
As Here, A=cosxA = \cos x and B=cos2xB = \cos 2x after substituting these values in the equation we get,
12(cos3x+cosx)cos3xdx\Rightarrow \dfrac{1}{2}\int {\left( {\cos 3x + \cos x} \right)\cos 3xdx}
By opening brackets and then multiplying the above equation we get,
12cos23x+cosxcos3xdx\Rightarrow \dfrac{1}{2}\int {{{\cos }^2}3x + \cos x\cos 3xdx}
Again multiplying and dividing the equation with 2 to make it the identity of 2cosAcosB2\cos A\cos B .
12×22(cos23x+cosxcos3x)dx\Rightarrow \dfrac{1}{{2 \times 2}}\int {2\left( {{{\cos }^2}3x + \cos x\cos 3x} \right)dx}
Opening brackets and then multiplying with each other. So, we get
142cos23x+2cosxcos3xdx\Rightarrow \dfrac{1}{4}\int {2{{\cos }^2}3x + 2\cos x\cos 3xdx}
Again using the formula of 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right) .
As Here, A=cosxA = \cos x and B=cos3xB = \cos 3x after substituting these values in the equation we get, .
142cos23x+cos4x+cos2xdx\Rightarrow \dfrac{1}{4}\int {2{{\cos }^2}3x + \cos 4x + \cos 2xdx}
Opening 2cos23x2{\cos ^2}3x by using the identity 2cos2x=1+cos2x2{\cos ^2}x = 1 + \cos 2x here x=3xx = 3x then we get,
141+cos6x+cos4x+cos2xdx\Rightarrow \dfrac{1}{4}\int {1 + \cos 6x + \cos 4x + \cos 2xdx}
Now, we will integrate with the above equation with respect to x .
14[x+sin6x6+sin4x4+sin2x2]+c\Rightarrow \dfrac{1}{4}\left[ {x + \dfrac{{\sin 6x}}{6} + \dfrac{{\sin 4x}}{4} + \dfrac{{\sin 2x}}{2}} \right] + c which is our required result.
So, the correct answer is “ 14[x+sin6x6+sin4x4+sin2x2]+c \Rightarrow \dfrac{1}{4}\left[ {x + \dfrac{{\sin 6x}}{6} + \dfrac{{\sin 4x}}{4} + \dfrac{{\sin 2x}}{2}} \right] + c ”.

Note : To solve these types of questions, we must remember the trigonometric formulas to solve it in a simple way. Once it is simplified we can easily integrate it as we have the equation in the simplest trigonometric functions.