Solveeit Logo

Question

Question: Find the integral of \[\dfrac{1}{\sqrt{{{x}^{2}}-{{a}^{2}}}}\] with respect to x and hence evaluate ...

Find the integral of 1x2a2\dfrac{1}{\sqrt{{{x}^{2}}-{{a}^{2}}}} with respect to x and hence evaluate 1x225dx\int{\dfrac{1}{\sqrt{{{x}^{2}}-25}}dx}.

Explanation

Solution

In this problem, we have to find the integral of the given square root. Here we can use the substitution method and substitute the value of x as asecta\sec t, we can then simplify the steps inside the integral using trigonometric formulae. We can then integrate the problem, and replace the t value as x.

Complete step-by-step solution:
We know that the given integral is,
1x2a2dx\int{\dfrac{1}{\sqrt{{{x}^{2}}-{{a}^{2}}}}}dx
We can now use the substitution method to integrate the given problem.
We can substitute for the x values,
Let x=asectx=a\sec t,
We can now differentiate the above substitution, we get
dx=asecttantdt\Rightarrow dx=a\sec t\tan tdt
We can now replace the x term with t, from the above substitutions, we get
asecttantdt(a2sec2t)a2=asecttantdtasec2t1\int{\dfrac{a\sec t\tan tdt}{\sqrt{\left( {{a}^{2}}{{\sec }^{2}}t \right)-{{a}^{2}}}}}=\int{\dfrac{a\sec t\tan tdt}{a\sqrt{{{\sec }^{2}}t-1}}}
We can now simplify the above terms, by using the trigonometric formula tan2t=sec2t1{{\tan }^{2}}t={{\sec }^{2}}t-1 and cancel the similar terms, we get
secttantdt(tant)=sectdt\Rightarrow \int{\dfrac{\sec t\tan tdt}{\left( \tan t \right)}}=\int{\sec tdt}
We can now integrate the above step, we get
lnsect+tant+C\Rightarrow \ln \left| \sec t+\tan t \right|+C
We can now write the above step in terms of x as we know that sect=xa\sec t=\dfrac{x}{a}, we get
lnxa+x2a2a\Rightarrow \ln \left| \dfrac{x}{a}+\dfrac{\sqrt{{{x}^{2}}-{{a}^{2}}}}{a} \right|
We can now factor the term 1a\dfrac{1}{a}, where ln1a\ln \dfrac{1}{a} can be observed in C, we get
lnx+x2a2+C\Rightarrow \ln \left| x+\sqrt{{{x}^{2}}-{{a}^{2}}} \right|+C
We can now evaluate 1x225dx\int{\dfrac{1}{\sqrt{{{x}^{2}}-25}}dx} by substituting a2=25{{a}^{2}}=25, we get
lnx+x225+C\Rightarrow \ln \left| x+\sqrt{{{x}^{2}}-25} \right|+C
Therefore, the answer is lnx+x225+C\ln \left| x+\sqrt{{{x}^{2}}-25} \right|+C.

Note: Students make mistakes while substitution, where we have to substitute the correct terms to get the final answer correct. We should always remember that the trigonometric formula used in this problem are cos2A=2cos2A1\cos 2A=2{{\cos }^{2}}A-1 and 1sin2t=cost\sqrt{1-{{\sin }^{2}}t}=\cos t. We should also remember that we have to replace the t terms to x terms at the final step.