Question
Question: Find the integral; \(\int{\sec x\left( \sec x+\tan x \right)dx}\)...
Find the integral;
∫secx(secx+tanx)dx
Solution
Hint: Simplify the expression within the integral sign and use the following results:
∫sec2xdx=tanx+C and ∫secxtanxdx=secx+C. Also, use the property that integral of the sum = sum of the integrals.
Complete step-by-step answer:
We, first of all, will simplify the integrand
=secx((secx+tanx)=secxsecx+secxtanx=sec2x+secxtanx
Hence ∫secx(secx+tanx)dx=∫(sec2x+secxtanx)dx
Since integral of the sum of functions is equal to the sum of integral of the functions, we have
∫secx(secx+tanx)dx=∫sec2xdx+∫secxtanxdx
We know that ∫sec2xdx=tanx+C and ∫secxtanxdx=secx+C
Using the above formulae, we get
∫secx(secx+tanx)dx=tanx+secx+C.
Hence ∫secx(secx+tanx)dx=tanx+secx+C.
Note: Alternatively, we can solve the above question by writing the integrand in terms of sine and cosine and then integrating.
Using secx=cosx1 and tanx=cosxsinx, we have
secx(secx+tanx)=cosx1cosx1+sinx=cos2x1+sinx
We know that cos2x=1−sin2x.
Using the above formula, we get
secx(secx+tanx)=1−sin2x1+sinx
We know that a2−b2=(a+b)(a−b)
Using the above formula, we get