Solveeit Logo

Question

Question: Find the integral: \(\int {\dfrac{{{e^x}(1 + x\log x)}}{x}dx} \)....

Find the integral: ex(1+xlogx)xdx\int {\dfrac{{{e^x}(1 + x\log x)}}{x}dx} .

Explanation

Solution

Hint – Divide by x in the numerator and denominator and then assume f(x)=logxf(x) = \log x. The integral will transform into ex[f(x)+f(x)]dx\int {{e^x}[f(x) + f'(x)]dx} form and the integration of this form is ex[f(x)+f(x)]dx=exf(x)+c\int {{e^x}[f(x) + f'(x)]dx} = {e^x}f(x) + c.

Complete step-by-step answer: -
Let us assume the given integral as,
I=ex(1+xlogx)xdxI = \int {\dfrac{{{e^x}(1 + x\log x)}}{x}dx} .
Now, dividing by x in numerator and denominator, we get-

I=ex(1+xlogx)xdx I=ex(1x+logx)dx  I = \int {\dfrac{{{e^x}(1 + x\log x)}}{x}dx} \\\ I = \int {{e^x}\left( {\dfrac{1}{x} + \log x} \right)} dx \\\

Now, if we consider, f(x)=logxf(x) = \log x, then f(x)=1xf'(x) = \dfrac{1}{x}.
So, we can write the above integral I as-
I=ex[f(x)+f(x)]dxI = \int {{e^x}[f(x) + f'(x)]dx}
Now, we know that ex[f(x)+f(x)]dx=exf(x)+c\int {{e^x}[f(x) + f'(x)]dx} = {e^x}f(x) + c.
Therefore, the above integral value is-
I=ex[f(x)+f(x)]dx=exf(x)+cI = \int {{e^x}[f(x) + f'(x)]dx} = {e^x}f(x) + c
Put the value f(x)=logxf(x) = \log x in the above integral, I we get-
I=exlogx+cI = {e^x}\log x + c.
Hence, the integration of ex(1+xlogx)xdx=exlogx+c\int {\dfrac{{{e^x}(1 + x\log x)}}{x}dx} = {e^x}\log x + c.

Note – Whenever this type of question appears then as mentioned in the solution, assume the integral as II, divide both numerator and denominator by x. After dividing, we can see that f(x)=logxf(x) = \log x and f(x)=1xf'(x) = \dfrac{1}{x}. So, the above integral can be written in the form I=ex[f(x)+f(x)]dxI = \int {{e^x}[f(x) + f'(x)]dx} and we know the integration of such forms is ex[f(x)+f(x)]dx=exf(x)+c\int {{e^x}[f(x) + f'(x)]dx} = {e^x}f(x) + c, and then again keeping the value of f(x) as log x in I , we get the integration value.