Solveeit Logo

Question

Question: Find the integral \(\int{\dfrac{dx}{{{\sin }^{2}}x{{\cos }^{2}}x}}\)? (a) \(\tan x-\cot x+c\) (b...

Find the integral dxsin2xcos2x\int{\dfrac{dx}{{{\sin }^{2}}x{{\cos }^{2}}x}}?
(a) tanxcotx+c\tan x-\cot x+c
(b) tanxx+1\tan x-x+1
(c) tanxx\tan x-x
(d) tanx+x\tan x+x

Explanation

Solution

Assume the given integral as ‘I’. Use the trigonometric identity 2sinxcosx=sin2x2\sin x\cos x=\sin 2x and simplify the function inside the integral. Now, Use the conversion 1sin2x=cosec2x\dfrac{1}{{{\sin }^{2}}x}=\cos e{{c}^{2}}x and integrate the cosecant function using the formula cosec2(ax+b)dx=1acot(ax+b)\int{\cos e{{c}^{2}}\left( ax+b \right)dx}=-\dfrac{1}{a}\cot \left( ax+b \right). Further, simplify the expression by using the formula cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x and the conversions sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x and cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot xto get the answer.

Complete step by step answer:
Here we have been asked to integrate the function 1sin2xcos2x\dfrac{1}{{{\sin }^{2}}x{{\cos }^{2}}x}. Let us assume the integral as I so we have,
I=dxsin2xcos2x\Rightarrow I=\int{\dfrac{dx}{{{\sin }^{2}}x{{\cos }^{2}}x}}
We can write the above integral as:
I=dx(sinxcosx)2\Rightarrow I=\int{\dfrac{dx}{{{\left( \sin x\cos x \right)}^{2}}}}
Using the trigonometric identity 2sinxcosx=sin2x2\sin x\cos x=\sin 2x we get,
I=dx(sin2x2)2 I=4dxsin22x \begin{aligned} & \Rightarrow I=\int{\dfrac{dx}{{{\left( \dfrac{\sin 2x}{2} \right)}^{2}}}} \\\ & \Rightarrow I=\int{\dfrac{4dx}{{{\sin }^{2}}2x}} \\\ \end{aligned}
Since 4 is a constant so it can be taken out of the integral and using the conversion 1sin2x=cosec2x\dfrac{1}{{{\sin }^{2}}x}=\cos e{{c}^{2}}x we have,
I=4cosec22xdx\Rightarrow I=4\int{\cos e{{c}^{2}}2xdx}
Now, using the integration formula of the co – secant function given as cosec2(ax+b)dx=1acot(ax+b)\int{\cos e{{c}^{2}}\left( ax+b \right)dx}=-\dfrac{1}{a}\cot \left( ax+b \right) where a and b are constants we get,
I=4(12cot2x) I=2(cot2x) \begin{aligned} & \Rightarrow I=4\left( -\dfrac{1}{2}\cot 2x \right) \\\ & \Rightarrow I=-2\left( \cot 2x \right) \\\ \end{aligned}
Using the conversion cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} we get,
I=2(cos2xsin2x)\Rightarrow I=-2\left( \dfrac{\cos 2x}{\sin 2x} \right)
Further using the trigonometric identity cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x in the numerator and 2sinxcosx=sin2x2\sin x\cos x=\sin 2x in the denominator we get,
I=2(cos2xsin2x2sinxcosx) I=(sin2xcos2xsinxcosx) \begin{aligned} & \Rightarrow I=-2\left( \dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{2\sin x\cos x} \right) \\\ & \Rightarrow I=\left( \dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{\sin x\cos x} \right) \\\ \end{aligned}
Breaking the terms we get,
I=sin2xsinxcosxcos2xsinxcosx\Rightarrow I=\dfrac{{{\sin }^{2}}x}{\sin x\cos x}-\dfrac{{{\cos }^{2}}x}{\sin x\cos x}
Cancelling the common terms and using the conversions sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x and cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x we get,
I=sinxcosxcosxsinx I=tanxcotx \begin{aligned} & \Rightarrow I=\dfrac{\sin x}{\cos x}-\dfrac{\cos x}{\sin x} \\\ & \Rightarrow I=\tan x-\cot x \\\ \end{aligned}
Now, since the given integral is an indefinite integral and therefore we need to add a constant of integration (c) in the expression obtained for I. So we get,
I=tanxcotx+c\therefore I=\tan x-\cot x+c

So, the correct answer is “Option a”.

Note: Remember all the trigonometric identities and the integral and differential formulas of basic functions such as trigonometric function, logarithmic function, inverse trigonometric functions etc. At last, do not forget to add the constant of integration (c) as we are finding indefinite integral and not definite integral. If options are given, you can also find the correct answer by differentiating the functions one by one. The option which will give the function present inside the integral sign will be our answer.