Solveeit Logo

Question

Question: Find the inclination to the major axis of the diameter of the ellipse, the square of whose length is...

Find the inclination to the major axis of the diameter of the ellipse, the square of whose length is (1) the arithmetic mean (2) the geometric mean (3) the harmonic mean, between the squares on the major and minor axes.

Explanation

Solution

We use the equation of an ellipse and equation of diameter to find the points of intersection of the diameter and the ellipse. Use the formula of distance between two points to find the length of the diameter and then square it. Square the value of major and minor axes to obtain the terms for three parts to calculate mean. Apply formulas of each of the means and find the value of slope. Equate the value of slope to tangent of the angle and calculate the angle.

  • A line through the center of the ellipse is called its diameter. The diameter of the ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1isy=b2a2mxy = - \dfrac{{{b^2}}}{{{a^2}m}}x, where m is the slope of the system of chordsy=mx+cy = mx + c.
  • Length of a line joining two points (x,y)(x,y) and(a,b)(a,b) is given by L=(xa)2+(yb)2L = \sqrt {{{(x - a)}^2} + {{(y - b)}^2}}
  • If a, b are two observations then:
    Arithmetic mean=a+b2 = \dfrac{{a + b}}{2}; Geometric mean=ab= \sqrt {ab}; Harmonic mean=2(1a+1b) = \dfrac{2}{{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)}}
  • Slope of a line y=mx+cy = mx + cis given by m=tanθm = \tan \theta

Complete step-by-step solution:
We have an ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1.................… (1)
Since the equation of the diameter is y=b2a2mxy = - \dfrac{{{b^2}}}{{{a^2}m}}x...............… (2)
Substitute the value of y from equation (2) in equation (1)
x2a2+(b2a2mx)2b2=1\Rightarrow \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{{\left( { - \dfrac{{{b^2}}}{{{a^2}m}}x} \right)}^2}}}{{{b^2}}} = 1
x2a2+b4x2a4m2b2=1\Rightarrow \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{b^4}{x^2}}}{{{a^4}{m^2}{b^2}}} = 1
Cancel same terms from numerator and denominator
x2a2+b2x2a4m2=1\Rightarrow \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{b^2}{x^2}}}{{{a^4}{m^2}}} = 1
Take LCM in LHS of the equation
a2m2x2+b2x2a4m2=1\Rightarrow \dfrac{{{a^2}{m^2}{x^2} + {b^2}{x^2}}}{{{a^4}{m^2}}} = 1
Cross multiply the values
(a2m2+b2)x2=a4m2\Rightarrow \left( {{a^2}{m^2} + {b^2}} \right){x^2} = {a^4}{m^2}
Divide both sides by a2m2+b2{a^2}{m^2} + {b^2}
x2=a4m2(a2m2+b2)\Rightarrow {x^2} = \dfrac{{{a^4}{m^2}}}{{\left( {{a^2}{m^2} + {b^2}} \right)}}
Take square root on both sides of the equation
x2=a4m2(a2m2+b2)\Rightarrow \sqrt {{x^2}} = \sqrt {\dfrac{{{a^4}{m^2}}}{{\left( {{a^2}{m^2} + {b^2}} \right)}}}
Cancel square power by square root
x=±a2ma2m2+b2\Rightarrow x = \pm \dfrac{{{a^2}m}}{{\sqrt {{a^2}{m^2} + {b^2}} }}...............… (3)
Substitute the value of x from equation (3) in equation (2) to find the value of y
y=b2a2m(±a2ma2m2+b2)\Rightarrow y = - \dfrac{{{b^2}}}{{{a^2}m}}\left( { \pm \dfrac{{{a^2}m}}{{\sqrt {{a^2}{m^2} + {b^2}} }}} \right)
Cancel same terms from numerator and denominator
y=b2a2m2+b2\Rightarrow y = \mp \dfrac{{{b^2}}}{{\sqrt {{a^2}{m^2} + {b^2}} }}.................… (4)
So, the points become (a2ma2m2+b2,b2a2m2+b2);(a2ma2m2+b2,b2a2m2+b2)\left( {\dfrac{{{a^2}m}}{{\sqrt {{a^2}{m^2} + {b^2}} }},\dfrac{{ - {b^2}}}{{\sqrt {{a^2}{m^2} + {b^2}} }}} \right);\left( {\dfrac{{ - {a^2}m}}{{\sqrt {{a^2}{m^2} + {b^2}} }},\dfrac{{{b^2}}}{{\sqrt {{a^2}{m^2} + {b^2}} }}} \right)
These points are points of intersection of the diameter with the ellipse.
We calculate the length of the diameter using a formula of distance between two points.
Length of a line joining two points (x,y)(x,y) and(a,b)(a,b) is given by L=(xa)2+(yb)2L = \sqrt {{{(x - a)}^2} + {{(y - b)}^2}}
So, the length of diameter (D) is given by
D=(a2ma2m2+b2a2ma2m2+b2)2+(b2a2m2+b2b2a2m2+b2)2D = \sqrt {{{\left( {\dfrac{{{a^2}m}}{{\sqrt {{a^2}{m^2} + {b^2}} }} - \dfrac{{ - {a^2}m}}{{\sqrt {{a^2}{m^2} + {b^2}} }}} \right)}^2} + {{\left( {\dfrac{{ - {b^2}}}{{\sqrt {{a^2}{m^2} + {b^2}} }} - \dfrac{{{b^2}}}{{\sqrt {{a^2}{m^2} + {b^2}} }}} \right)}^2}}
Take LCM in the brackets
D=(a2m+a2ma2m2+b2)2+(b2b2a2m2+b2)2D = \sqrt {{{\left( {\dfrac{{{a^2}m + {a^2}m}}{{\sqrt {{a^2}{m^2} + {b^2}} }}} \right)}^2} + {{\left( {\dfrac{{ - {b^2} - {b^2}}}{{\sqrt {{a^2}{m^2} + {b^2}} }}} \right)}^2}}
D=(2a2ma2m2+b2)2+(2b2a2m2+b2)2D = \sqrt {{{\left( {\dfrac{{2{a^2}m}}{{\sqrt {{a^2}{m^2} + {b^2}} }}} \right)}^2} + {{\left( {\dfrac{{ - 2{b^2}}}{{\sqrt {{a^2}{m^2} + {b^2}} }}} \right)}^2}}
Square the terms inside the bracket
D=4a4m2a2m2+b2+4b4a2m2+b2D = \sqrt {\dfrac{{4{a^4}{m^2}}}{{{a^2}{m^2} + {b^2}}} + \dfrac{{4{b^4}}}{{{a^2}{m^2} + {b^2}}}}
Take LCM on RHS
D=4a4m2+4b4a2m2+b2D = \sqrt {\dfrac{{4{a^4}{m^2} + 4{b^4}}}{{{a^2}{m^2} + {b^2}}}}
Square both sides of the equation
D2=(4a4m2+4b4a2m2+b2)2{D^2} = {\left( {\sqrt {\dfrac{{4{a^4}{m^2} + 4{b^4}}}{{{a^2}{m^2} + {b^2}}}} } \right)^2}
Cancel square root by square power
D2=4a4m2+4b4a2m2+b2{D^2} = \dfrac{{4{a^4}{m^2} + 4{b^4}}}{{{a^2}{m^2} + {b^2}}}
Take 4 common from numerator
D2=4(a4m2+b4)a2m2+b2{D^2} = 4\dfrac{{\left( {{a^4}{m^2} + {b^4}} \right)}}{{{a^2}{m^2} + {b^2}}} …………….… (5)
So, the square of the length of the diameter is4(a4m2+b4)a2m2+b24\dfrac{{\left( {{a^4}{m^2} + {b^4}} \right)}}{{{a^2}{m^2} + {b^2}}}.
We know the major axis and the minor axis of the eclipse are given by 2a and 2b respectively.
Since length of major axis is 2a (2a)2=4a2 \Rightarrow {\left( {2a} \right)^2} = 4{a^2}
Since length of minor axis is 2b (2b)2=4b2 \Rightarrow {\left( {2b} \right)^2} = 4{b^2}
Now we calculate the required inclination in each part separately using the observations 4a2,4b24{a^2},4{b^2}
(1) The arithmetic mean:
Arithmetic mean is given by the sum of observations divided by the number of observations.
\RightarrowMean=4a2+4b22 = \dfrac{{4{a^2} + 4{b^2}}}{2}
Cancel 2 from both numerator and denominator
\RightarrowMean=2a2+2b2 = 2{a^2} + 2{b^2}
Now we equate the square of diameter obtained from equation (5) to arithmetic mean
4(a4m2+b4)a2m2+b2=2a2+2b2\Rightarrow 4\dfrac{{\left( {{a^4}{m^2} + {b^4}} \right)}}{{{a^2}{m^2} + {b^2}}} = 2{a^2} + 2{b^2}
Cancel 2 from both sides of the equation
2(a4m2+b4)a2m2+b2=a2+b2\Rightarrow \dfrac{{2\left( {{a^4}{m^2} + {b^4}} \right)}}{{{a^2}{m^2} + {b^2}}} = {a^2} + {b^2}
Cross multiply values on both sides of the equation
2(a4m2+b4)=(a2+b2)(a2m2+b2)\Rightarrow 2\left( {{a^4}{m^2} + {b^4}} \right) = \left( {{a^2} + {b^2}} \right)\left( {{a^2}{m^2} + {b^2}} \right)
Multiply the terms
2a4m2+2b4=a4m2+a2b2+a2b2m2+b4\Rightarrow 2{a^4}{m^2} + 2{b^4} = {a^4}{m^2} + {a^2}{b^2} + {a^2}{b^2}{m^2} + {b^4}
Bring all terms on one side of the equation
2a4m2+2b4a4m2a2b2a2b2m2b4=0\Rightarrow 2{a^4}{m^2} + 2{b^4} - {a^4}{m^2} - {a^2}{b^2} - {a^2}{b^2}{m^2} - {b^4} = 0
a4m2+b4a2b2a2b2m2=0\Rightarrow {a^4}{m^2} + {b^4} - {a^2}{b^2} - {a^2}{b^2}{m^2} = 0
Pair up the terms having common factor between them
(a4m2a2b2m2)+(b4a2b2)=0\Rightarrow \left( {{a^4}{m^2} - {a^2}{b^2}{m^2}} \right) + \left( {{b^4} - {a^2}{b^2}} \right) = 0
Take out common factor from brackets
a2m2(a2b2)b2(a2b2)=0\Rightarrow {a^2}{m^2}\left( {{a^2} - {b^2}} \right) - {b^2}\left( {{a^2} - {b^2}} \right) = 0
Shift negative term to RHS
a2m2(a2b2)=b2(a2b2)\Rightarrow {a^2}{m^2}\left( {{a^2} - {b^2}} \right) = {b^2}\left( {{a^2} - {b^2}} \right)
Cancel same factor from both sides of the equation
a2m2=b2\Rightarrow {a^2}{m^2} = {b^2}
Divide both sides by a2{a^2}
m2=b2a2\Rightarrow {m^2} = \dfrac{{{b^2}}}{{{a^2}}}
Take square root on both sides of the equation
m2=b2a2\Rightarrow \sqrt {{m^2}} = \sqrt {\dfrac{{{b^2}}}{{{a^2}}}}
Cancel square power by square root
m=ba\Rightarrow m = \dfrac{b}{a}
Since we know slope is given by tangent of the angle of inclination,
tanθ=ba\Rightarrow \tan \theta = \dfrac{b}{a}
Take inverse tangent on both sides of the equation
tan1(tanθ)=tan1(ba)\Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}\left( {\dfrac{b}{a}} \right)
Cancel inverse of the function with the function
θ=tan1(ba)\Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{b}{a}} \right)
\therefore Angle of inclination is tan1(ba){\tan ^{ - 1}}\left( {\dfrac{b}{a}} \right)
(2) The geometric mean:
Since geometric mean of two numbers ‘a’ and ‘b’ =ab= \sqrt {ab}
We find Geometric mean of 4a2,4b24{a^2},4{b^2}
\RightarrowMean=4a2×4b2= \sqrt {4{a^2} \times 4{b^2}}
Cancel square root by square power
\RightarrowMean=4ab = 4ab
Now we equate the square of diameter obtained from equation (5) to geometric mean
4(a4m2+b4)a2m2+b2=4ab\Rightarrow 4\dfrac{{\left( {{a^4}{m^2} + {b^4}} \right)}}{{{a^2}{m^2} + {b^2}}} = 4ab
Cancel 4 from both sides of the equation
(a4m2+b4)a2m2+b2=ab\Rightarrow \dfrac{{\left( {{a^4}{m^2} + {b^4}} \right)}}{{{a^2}{m^2} + {b^2}}} = ab
Cross multiply values on both sides of the equation
(a4m2+b4)=(ab)(a2m2+b2)\Rightarrow \left( {{a^4}{m^2} + {b^4}} \right) = \left( {ab} \right)\left( {{a^2}{m^2} + {b^2}} \right)
Multiply the terms
a4m2+b4=a3bm2+ab3\Rightarrow {a^4}{m^2} + {b^4} = {a^3}b{m^2} + a{b^3}
Bring all terms on one side of the equation
a4m2+b4a3bm2ab3=0\Rightarrow {a^4}{m^2} + {b^4} - {a^3}b{m^2} - a{b^3} = 0
Pair up the terms having common factor between them
(a4m2a3bm2)+(b4ab3)=0\Rightarrow \left( {{a^4}{m^2} - {a^3}b{m^2}} \right) + \left( {{b^4} - a{b^3}} \right) = 0
Take out common factor from brackets
a3m2(ab)b3(ab)=0\Rightarrow {a^3}{m^2}\left( {a - b} \right) - {b^3}\left( {a - b} \right) = 0
Shift negative term to RHS
a3m2(ab)=b3(ab)\Rightarrow {a^3}{m^2}\left( {a - b} \right) = {b^3}\left( {a - b} \right)
Cancel same factor from both sides of the equation
a3m2=b3\Rightarrow {a^3}{m^2} = {b^3}
Divide both sides by a3{a^3}
m2=b3a3\Rightarrow {m^2} = \dfrac{{{b^3}}}{{{a^3}}}
Take square root on both sides of the equation
m2=(ba)3\Rightarrow \sqrt {{m^2}} = \sqrt {{{\left( {\dfrac{b}{a}} \right)}^3}}
Cancel square power by square root in LHS
m=(ba)3/2\Rightarrow m = {\left( {\dfrac{b}{a}} \right)^{3/2}}
Since we know slope is given by tangent of the angle of inclination,
tanθ=(ba)3/2\Rightarrow \tan \theta = {\left( {\dfrac{b}{a}} \right)^{3/2}}
Take inverse tangent on both sides of the equation
tan1(tanθ)=tan1(ba)3/2\Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}{\left( {\dfrac{b}{a}} \right)^{3/2}}
Cancel inverse of the function with the function
θ=tan1(ba)3/2\Rightarrow \theta = {\tan ^{ - 1}}{\left( {\dfrac{b}{a}} \right)^{3/2}}
\therefore Angle of inclination is tan1(ba)3/2{\tan ^{ - 1}}{\left( {\dfrac{b}{a}} \right)^{3/2}}
(3) The harmonic mean:
Since we know harmonic mean of two numbers ‘a’ and ‘b’ =2(1a+1b) = \dfrac{2}{{\left( {\dfrac{1}{a} + \dfrac{1}{b}} \right)}}
We find the harmonic mean of 4a2,4b24{a^2},4{b^2}
\RightarrowMean=2(14a2+14b2) = \dfrac{2}{{\left( {\dfrac{1}{{4{a^2}}} + \dfrac{1}{{4{b^2}}}} \right)}}
Take LCM in the denominator
\RightarrowMean=2(4b2+4a216a2b2) = \dfrac{2}{{\left( {\dfrac{{4{b^2} + 4{a^2}}}{{16{a^2}{b^2}}}} \right)}}
\RightarrowMean=2×16a2b24(b2+a2) = \dfrac{{2 \times 16{a^2}{b^2}}}{{4\left( {{b^2} + {a^2}} \right)}}
Cancel same terms from numerator and denominator
\RightarrowMean=2×4a2b2(b2+a2) = \dfrac{{2 \times 4{a^2}{b^2}}}{{\left( {{b^2} + {a^2}} \right)}}
\RightarrowMean=8a2b2a2+b2 = \dfrac{{8{a^2}{b^2}}}{{{a^2} + {b^2}}}
Now we equate the square of diameter obtained from equation (5) to harmonic mean
4(a4m2+b4)a2m2+b2=8a2b2a2+b2\Rightarrow 4\dfrac{{\left( {{a^4}{m^2} + {b^4}} \right)}}{{{a^2}{m^2} + {b^2}}} = \dfrac{{8{a^2}{b^2}}}{{{a^2} + {b^2}}}
Cancel 4 from both sides of the equation
(a4m2+b4)a2m2+b2=2a2b2a2+b2\Rightarrow \dfrac{{\left( {{a^4}{m^2} + {b^4}} \right)}}{{{a^2}{m^2} + {b^2}}} = \dfrac{{2{a^2}{b^2}}}{{{a^2} + {b^2}}}
Cross multiply values on both sides of the equation
(a4m2+b4)(a2+b2)=(2a2b2)(a2m2+b2)\Rightarrow \left( {{a^4}{m^2} + {b^4}} \right)\left( {{a^2} + {b^2}} \right) = \left( {2{a^2}{b^2}} \right)\left( {{a^2}{m^2} + {b^2}} \right)
Multiply the terms
a6m2+a2b4+a4b2m2+b6=2a4b2m2+2a2b4\Rightarrow {a^6}{m^2} + {a^2}{b^4} + {a^4}{b^2}{m^2} + {b^6} = 2{a^4}{b^2}{m^2} + 2{a^2}{b^4}
Bring all terms on one side of the equation
a6m2+a2b4+a4b2m2+b62a4b2m22a2b4=0\Rightarrow {a^6}{m^2} + {a^2}{b^4} + {a^4}{b^2}{m^2} + {b^6} - 2{a^4}{b^2}{m^2} - 2{a^2}{b^4} = 0
a6m2a2b4+b6a4b2m2=0\Rightarrow {a^6}{m^2} - {a^2}{b^4} + {b^6} - {a^4}{b^2}{m^2} = 0
Pair up the terms having common factor between them
(a6m2a4b2m2)+(a2b4+b6)=0\Rightarrow \left( {{a^6}{m^2} - {a^4}{b^2}{m^2}} \right) + \left( { - {a^2}{b^4} + {b^6}} \right) = 0
Take out common factor from brackets
a4m2(a2b2)b4(a2b2)=0\Rightarrow {a^4}{m^2}\left( {{a^2} - {b^2}} \right) - {b^4}\left( {{a^2} - {b^2}} \right) = 0
Shift negative term to RHS
a4m2(a2b2)=b4(a2b2)\Rightarrow {a^4}{m^2}\left( {{a^2} - {b^2}} \right) = {b^4}\left( {{a^2} - {b^2}} \right)
Cancel same factor from both sides of the equation
a4m2=b4\Rightarrow {a^4}{m^2} = {b^4}
Divide both sides by a4{a^4}
m2=b4a4\Rightarrow {m^2} = \dfrac{{{b^4}}}{{{a^4}}}
Take square root on both sides of the equation
m2=(b2a2)2\Rightarrow \sqrt {{m^2}} = \sqrt {{{\left( {\dfrac{{{b^2}}}{{{a^2}}}} \right)}^2}}
Cancel square power by square root
m=(ba)2\Rightarrow m = {\left( {\dfrac{b}{a}} \right)^2}
Since we know slope is given by tangent of the angle of inclination,
tanθ=(ba)2\Rightarrow \tan \theta = {\left( {\dfrac{b}{a}} \right)^2}
Take inverse tangent on both sides of the equation
tan1(tanθ)=tan1(ba)2\Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}{\left( {\dfrac{b}{a}} \right)^2}
Cancel inverse of the function with the function
θ=tan1(ba)2\Rightarrow \theta = {\tan ^{ - 1}}{\left( {\dfrac{b}{a}} \right)^2}
\therefore Angle of inclination is tan1(ba)2{\tan ^{ - 1}}{\left( {\dfrac{b}{a}} \right)^2}

Note: Students many times make mistakes in writing the angle as tangent value, keep in mind the tangent value is the value of the slope, the angle of which we take tan is the angle of inclination. Also, many students make mistakes while shifting values from one side of the equation to another, keep in mind we always change sign when shifting values.