Question
Question: Find the imaginary part of \(\dfrac{{{\left( 1+i \right)}^{2}}}{\left( 2-i \right)}\) is: a). \(\d...
Find the imaginary part of (2−i)(1+i)2 is:
a). 51
b). 53
c). 54
d). None of these
Solution
Hint: We will first simplify the given complex number by expanding the numerator and then multiplying and dividing by the complex conjugate of the denominator. Having simplified it, we will compare it with the general form of complex number a+bi . The value of b is our answer.
Complete step-by-step solution -
Given complex number is (2−i)(1+i)2
Expanding the numerator using the formula (a+b)2=a2+2ab+b2 we get,
2−i(1+i)2=2−ii2+2×1×i+i2
Since i2=−1 ,
2−i(1+i)2=(2−i)1+2i−1 .
Thus, 2−i(1+i)2=2−i2i .
Now, multiplying and dividing by the complex conjugate of 2-I we get,
2−i(1+i)2=2−i2i×2+i2+i................2+i is the complex conjugate of 2-i.
Now multiplying and simplifying, we get,
2−i(1+i)2=(2−i)×(2+i)(2i)×(2+i)2−i(1+i)2=(2×2)+(2×i)+(−i×2)+(−i×i)(2i×2)+(2i×i)2−i(1+i)2=4+2i−2i−i24i+2i2
Since i2=−1 , we get.
(2−i)(1+i)2=4−(−1)4i+2(−1)(2−i)(1+i)2=4+14i−2(2−i)(1+i)2=5−2+4i(2−i)(1+i)2=5−2+54i
Now, finally we have,
(2−i)(1+i)2=5−2+54i
Now, comparing this with the general form of the complex number a+bi, where a is the real part and b is the imaginary part, we have.
a+bi=5−2+54i
Thus, a=5−2 and b=54 .
Thus, the imaginary part of the complex number (2−i)(1+i)2 is 54
Therefore, option (c) is correct.
Note: We can also solve this problem by converting the complex number to polar form. Thus, the given number is 2−i(1+i)2.
Now, 1+i has to be converted to polar form, using the formula,
, a+bi=(a2+b2)eiθ , where,
(i) θ=tan−1(ab) , if (a,b)∈I quadrant.
(ii) θ=π−tan−1(ab) , if (a,b)∈II quadrant.
(iii) θ=π+tan−1(ab) , if (a,b)∈III quadrant.
(iv) θ=−tan−1(ab) , if (a,b)∈IV quadrant.
Now, for 1+i , a=1 and b=1.
∴(a,b) that is (1,1) belongs to I quadrant
Thus 1+i=(12+12)eiθ , where θ=tan−1(11) .
⇒1+i=2e4iπ , Since θ=tan−1(1)
θ=4π
Now, similarly we convert 2−i to polar form.
Here, a=2, b=-1
Therefore, (a,b)∈IV Quadrant
Thus, 2−i=(22+(−1)2)eiθ , θ=−tan−1(2−1).
⇒2−i=(4+1)eiθ , θ=−tan−1(21) .
⇒2−i=5eitan−1(21)
Now, putting these polar forms in place, we get,
2−i(1+i)2=5e−itan−1(21)2e4iπ2
2−i(1+i)2=5e−itan−1(21)(2)2e4iπ×2 ……………… using (am)n=amn .
2−i(1+i)2=5e−itan−1(21)2e2iπ
2−i(1+i)2=52e2iπ+itan−1(21) ………………………………. Using a−nam=am+n .
2−i(1+i)2=52ei2π+tan−121
Now, we know, Euler’s formula,
eiθ=cosθ+isinθ , and we also know that
cos(2π+θ)=−sinθ and sin(2π+θ)=cosθ .
Now, putting θ as 2π+tan−1(21) we get,
ei(2π+tan−1(21))=cos(2π+tan−1(21))+isin(2π+tan−1(21))=−sin(tan−1(21))+icos(tan−1(21))
Now, let α=tan−1(21)
Therefore, tanα=(21)
Now, tanα=Adjacent sideopposite side .
Thus, opposite side = 1 and adjacent side = 2.
Therefore, hypotenuse =(opposite side)2+(Adjacent side)2