Solveeit Logo

Question

Question: Find the image of point (5,2, -7) in XY-plane and image of point (-4,0,7) in XZ-plane....

Find the image of point (5,2, -7) in XY-plane and image of point (-4,0,7) in XZ-plane.

Explanation

Solution

Hint: We should know that equation of XY-plane is z=0, equation of YZ-plane is x=0 and equation of XZ-plane is y=0. We should know that a point A(h,k,l)A(h,k,l) is image of B(x1,y1,z1)B({{x}_{1}},{{y}_{1}},{{z}_{1}}) with respect to the plane ax+by+cz=dax+by+cz=d if hx1a=ky1b=lz1c=2(ax1+by1+c)a2+b2+c2\dfrac{h-{{x}_{1}}}{a}=\dfrac{k-{{y}_{1}}}{b}=\dfrac{l-{{z}_{1}}}{c}=\dfrac{-2(a{{x}_{1}}+b{{y}_{1}}+c)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}. Now we should find the image of point (5,2, -7) in XY-plane and image of point (-4,0,7) in XZ-plane by using the above formula.

Complete step-by-step answer:
From the question, we were given to find the image of point (5,2, -7) in XY-plane.
Before solving the problem, we should know that the equation of XY-plane is z=0, equation of YZ-plane is y=0 and equation of XZ-plane is y=0.
We should know that a point A(h,k,l)A(h,k,l) is image of B(x1,y1,z1)B({{x}_{1}},{{y}_{1}},{{z}_{1}}) with respect to the plane ax+by+cz=dax+by+cz=d if hx1a=ky1b=lz1c=2(ax1+by1+c)a2+b2+c2\dfrac{h-{{x}_{1}}}{a}=\dfrac{k-{{y}_{1}}}{b}=\dfrac{l-{{z}_{1}}}{c}=\dfrac{-2(a{{x}_{1}}+b{{y}_{1}}+c)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}.
Now we should find the image of point B (5,2, -7) with respect to line z=0.
Now we should compare z=0 with ax+by+cz=dax+by+cz=d.
We get a=0, b=0, c=1 and d=0.
Let us compare B(x1,y1,z1)B({{x}_{1}},{{y}_{1}},{{z}_{1}}) with B (5,2, -7), then x1=5,y1=2,z1=7{{x}_{1}}=5,{{y}_{1}}=2,{{z}_{1}}=-7.
We should know that a point A(h,k,l)A(h,k,l) is image of B(x1,y1,z1)B({{x}_{1}},{{y}_{1}},{{z}_{1}}) with respect to the plane ax+by+cz=dax+by+cz=d if hx1a=ky1b=lz1c=2(ax1+by1+c)a2+b2+c2\dfrac{h-{{x}_{1}}}{a}=\dfrac{k-{{y}_{1}}}{b}=\dfrac{l-{{z}_{1}}}{c}=\dfrac{-2(a{{x}_{1}}+b{{y}_{1}}+c)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}.
Let us assume the image of B (5,2, -7) on the XY-plane is A(h,k,l)A(h,k,l).

& \Rightarrow \dfrac{h-5}{0}=\dfrac{k-2}{0}=\dfrac{z+7}{1}=\dfrac{-2(-7)}{1} \\\ & \Rightarrow \dfrac{h-5}{0}=\dfrac{k-2}{0}=\dfrac{z+7}{1}=14 \\\ & \Rightarrow h=5,k=2,z=7 \\\ \end{aligned}$$ So, it is clear that the image of point (5,2, -7) with respect to XY-plane is (5,2,7). Now we should find the image of point (-4,0,7) with respect to line y=0. Now we should compare y=0 with $$ax+by+cz=d$$. We get a=0, b=1, c=0 and d=0. Let us compare $$B({{x}_{1}},{{y}_{1}},{{z}_{1}})$$ with C (-4,0, 7), then $${{x}_{1}}=-4,{{y}_{1}}=0,{{z}_{1}}=7$$. We should know that a point $$A(h,k,l)$$ is image of $$B({{x}_{1}},{{y}_{1}},{{z}_{1}})$$ with respect to the plane $$ax+by+cz=d$$ if $$\dfrac{h-{{x}_{1}}}{a}=\dfrac{k-{{y}_{1}}}{b}=\dfrac{l-{{z}_{1}}}{c}=\dfrac{-2(a{{x}_{1}}+b{{y}_{1}}+c)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$$. Let us assume the image of C (-4,0,7) with respect to line y=0. $$\begin{aligned} & \Rightarrow \dfrac{h+4}{0}=\dfrac{k-0}{1}=\dfrac{z-7}{0}=\dfrac{-2(0)}{1} \\\ & \Rightarrow \dfrac{h+4}{0}=\dfrac{k-0}{1}=\dfrac{z-7}{0}=0 \\\ & \Rightarrow h=-4,k=0,z=7 \\\ \end{aligned}$$ So, it is clear that the image of point (-4,0, 7) with respect to XZ-plane is (-4,0,7). Note: This sum can be solved in an alternative method also. We know that the image of a point $$B({{x}_{1}},{{y}_{1}},{{z}_{1}})$$ with respect to XY-plane is $$({{x}_{1}},{{y}_{1}},-{{z}_{1}})$$, the image of point $$B({{x}_{1}},{{y}_{1}},{{z}_{1}})$$ with respect to YZ-plane is $$(-{{x}_{1}},{{y}_{1}},{{z}_{1}})$$ and $$B({{x}_{1}},{{y}_{1}},{{z}_{1}})$$ with respect to XZ-plane is $$({{x}_{1}},-{{y}_{1}},{{z}_{1}})$$. So, the image of point (5,2, -7) with respect to XY-plane is (5,2,7). The image of point C (4,0, -7) with respect to XZ-plane is (4,0, -7). ![](https://www.vedantu.com/question-sets/a7970445-9845-42d1-af81-143b0183f4a81568752108290443501.png) ![](https://www.vedantu.com/question-sets/49ef5f82-823e-454b-8e51-73f4268c68045349652805833368607.png)