Solveeit Logo

Question

Question: Find the greatest value of \[{a^2}{b^3}{c^2}\], if \(a + b + c = 3\) and \(a > 0,b > 0,c > 0\). Choo...

Find the greatest value of a2b3c2{a^2}{b^3}{c^2}, if a+b+c=3a + b + c = 3 and a>0,b>0,c>0a > 0,b > 0,c > 0. Choose the correct answer.
(A) 322322{3^2}{2^3}{2^2}
(B) 322372{3^2}{2^3}{7^2}
(C) 310×2477\dfrac{{{3^{10}} \times {2^4}}}{{{7^7}}}
(D) 34×21074\dfrac{{{3^4} \times {2^{10}}}}{{{7^4}}}

Explanation

Solution

In this question we will use the concept of arithmetic mean and geometric mean to find the greatest value of the given term. In this we consider that arithmetic mean is greater than or equal to geometric mean. We write the term given in the form of arithmetic mean and geometric mean. Now we find the greatest value of the given term.

Complete step-by-step answer:
As it is given in the question a+b+c=3a + b + c = 3.
In this we will use the arithmetic mean and geometric mean to find the greatest value of a2b3c2{a^2}{b^3}{c^2}.
We consider that arithmetic mean  geometric meanarithmetic{\text{ }}mean{\text{ }} \geqslant {\text{ }}geometric{\text{ }}mean.
Now we write the given equation a+b+c=3a + b + c = 3in the form of arithmetic mean, we get
a2+a2+b3+b3+b3+c2+c2=3\Rightarrow \dfrac{a}{2} + \dfrac{a}{2} + \dfrac{b}{3} + \dfrac{b}{3} + \dfrac{b}{3} + \dfrac{c}{2} + \dfrac{c}{2} = 3
Now we also write the given equation a+b+c=3a + b + c = 3 in the form of geometric mean, we get
(a222×b333×c222)17\Rightarrow {\left( {\dfrac{{{a^2}}}{{{2^2}}} \times \dfrac{{{b^3}}}{{{3^3}}} \times \dfrac{{{c^2}}}{{{2^2}}}} \right)^{\dfrac{1}{7}}}
Now we will use the relation between arithmetic mean and geometric mean as
A.MG.MA.M \geqslant G.M
Formula of A.M=sum of the numbersnumber of termsA.M = \dfrac{{sum{\text{ }}of{\text{ }}the{\text{ }}numbers}}{{number{\text{ }}of{\text{ }}terms}}
Now we put the values in the formula we get,
A.M=a2+a2+b3+b3+b3+c2+c27A.M = \dfrac{{\dfrac{a}{2} + \dfrac{a}{2} + \dfrac{b}{3} + \dfrac{b}{3} + \dfrac{b}{3} + \dfrac{c}{2} + \dfrac{c}{2}}}{7}
We put the values of the equation in the above relation we get,
a2+a2+b3+b3+b3+c2+c27(a222×b333×c222)17\Rightarrow \dfrac{{\dfrac{a}{2} + \dfrac{a}{2} + \dfrac{b}{3} + \dfrac{b}{3} + \dfrac{b}{3} + \dfrac{c}{2} + \dfrac{c}{2}}}{7} \geqslant {\left( {\dfrac{{{a^2}}}{{{2^2}}} \times \dfrac{{{b^3}}}{{{3^3}}} \times \dfrac{{{c^2}}}{{{2^2}}}} \right)^{\dfrac{1}{7}}}
Now we put the value of a2+a2+b3+b3+b3+c2+c2=3\dfrac{a}{2} + \dfrac{a}{2} + \dfrac{b}{3} + \dfrac{b}{3} + \dfrac{b}{3} + \dfrac{c}{2} + \dfrac{c}{2} = 3 in the equation, we get,
37(a222×b333×c222)17\Rightarrow \dfrac{3}{7} \geqslant {\left( {\dfrac{{{a^2}}}{{{2^2}}} \times \dfrac{{{b^3}}}{{{3^3}}} \times \dfrac{{{c^2}}}{{{2^2}}}} \right)^{\dfrac{1}{7}}}
Now we multiply the equation by the power 7, we get
(37)7(a222×b333×c222)17×7\Rightarrow {\left( {\dfrac{3}{7}} \right)^7} \geqslant {\left( {\dfrac{{{a^2}}}{{{2^2}}} \times \dfrac{{{b^3}}}{{{3^3}}} \times \dfrac{{{c^2}}}{{{2^2}}}} \right)^{\dfrac{1}{7} \times 7}}
By solving the above equation we get,
3777a222×b333×c222\Rightarrow \dfrac{{{3^7}}}{{{7^7}}} \geqslant \dfrac{{{a^2}}}{{{2^2}}} \times \dfrac{{{b^3}}}{{{3^3}}} \times \dfrac{{{c^2}}}{{{2^2}}}
Now in the denominator of R.H.S we apply the formula as
am×an=am+n\Rightarrow {a^m} \times {a^n} = {a^{m + n}}, where a=2,m=2,n=2a = 2,m = 2,n = 2 , we get
3777a2×b3×c224×33\Rightarrow \dfrac{{{3^7}}}{{{7^7}}} \geqslant \dfrac{{{a^2} \times {b^3} \times {c^2}}}{{{2^4} \times {3^3}}}
Now we move the constant value in the denominator of R.H.S to L.H.S, we get

37×24×3377a2b3c2 \Rightarrow \dfrac{{{3^7} \times {2^4} \times {3^3}}}{{{7^7}}} \geqslant {a^2}{b^3}{c^2}
Now in the numerator of L.H.S we apply the formula as
am×an=am+n\Rightarrow {a^m} \times {a^n} = {a^{m + n}}, where a=3,m=7,n=3a = 3,m = 7,n = 3 , we get
37+3×2477a2b3c2\Rightarrow \dfrac{{{3^{7 + 3}} \times {2^4}}}{{{7^7}}} \geqslant {a^2}{b^3}{c^2}
310×2477a2b3c2\Rightarrow \dfrac{{{3^{10}} \times {2^4}}}{{{7^7}}} \geqslant {a^2}{b^3}{c^2}

So, the greatest value of a2b3c2{a^2}{b^3}{c^2} is 310×2477\dfrac{{{3^{10}} \times {2^4}}}{{{7^7}}}.

So, the correct answer is “Option C”.

Note: In these type of questions we should write the given equation in the form of arithmetic mean and geometric mean. And then we should compare both arithmetic mean and geometric mean to find the greatest value of the given term. We also remember to calculate the total number of terms in the given equation after converting it in the form of arithmetic mean and geometric mean.