Solveeit Logo

Question

Mathematics Question on Differential equations

Find the general solution: xlog xdydx+y=2xlog xxlog\ x\frac {dy}{dx}+y=\frac {2}{x}log\ x

Answer

The given differential equation is:

xlog xdydx\frac {dy}{dx}+y = 2x\frac 2xlogx

dydx\frac {dy}{dx}+yxlog x\frac {y}{xlog\ x} = 2x2\frac {2}{x^2}

This equation is the form of a differential equation as:

dydx\frac {dy}{dx} + py = Q (where p = 1xlog x\frac {1}{xlog\ x} and Q = 2x2\frac {2}{x^2})

Now,I.F. = e∫pdx = e1xlog xdxe^{∫\frac {1}{xlog\ x} dx} = elog(log x) = log x

The general solution of the given differential equation is given by the relation,

y(I.F.) = ∫(Q×I.F.)dx + C

⇒ylog x = ∫(2x2\frac {2}{x^2}log x)dx + C ….....(1)

Now,∫(2x2\frac {2}{x^2}log x)dx = 2∫(logx.1x2\frac {1}{x^2})dx

                            = 2[log x.∫$\frac {1}{x^2}$dx - ∫{$\frac {d}{dx}$(log x).∫$\frac {1}{x^2}$dx}dx]

                            = 2[log x(-$\frac 1x$) - ∫($\frac 1x$.(-$\frac 1x$))dx]

                           = 2[-$\frac {log\ x}{x}$ \+ ∫$\frac {1}{x^2}$dx]

                           = 2[-$\frac {log\ x}{x}$-$\frac 1x$]

                           = -$\frac 2x$(1+logx)

Substituting the value of ∫(2x2\frac {2}{x^2}log x)dx in equation(1), we get:

ylog x = -2x\frac 2x(1+log x) + C

This is the required general solution of the given differential equation.